scholarly journals Numerical inverse Laplace homotopy technique for fractional heat equations

2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 185-194 ◽  
Author(s):  
Mehmet Yavuz ◽  
Necati Ozdemir

In this paper, we have aimed the numerical inverse Laplace homotopy technique for solving some interesting 1-D time-fractional heat equations. This method is based on the Laplace homotopy perturbation method, which is combined form of the Laplace transform and the homotopy perturbation method. Firstly, we have applied to the fractional 1-D PDE by using He?s polynomials. Then we have used Laplace transform method and discussed how to solve these PDE by using Laplace homotopy perturbation method. We have declared that the proposed model is very efficient and powerful technique in finding approximate solutions to the fractional PDE.

2019 ◽  
Vol 29 ◽  
pp. 1-14
Author(s):  
U. Filobello-Nino ◽  
H. Vazquez-Leal ◽  
A. L. Herrera-May ◽  
V. M. Jimenez-Fernandez ◽  
J. Cervantes-Perez ◽  
...  

This work introduces the Laplace Transform-Homotopy Perturbation Method (LT-HPM) in order to provide an approximate solution for Troesch’s problem. After comparing figures between exact and approximate solutions, as well as the average absolute relative error (AARE) of the approximate solutions of this research, with others reported in the literature, it can be said that the proposed solutions are accurate and handy. In conclusion, LT-HPM is a potentially useful tool.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hossein Aminikhah

We introduce a new hybrid of the Laplace transform method and new homotopy perturbation method (LTNHPM) that efficiently solves nonlinear two-dimensional Burgers’ equation. Three examples are given to demonstrate the efficiency of the new method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yanqin Liu ◽  
Fengsheng Xu ◽  
Xiuling Yin

A novel modification of the variational iteration method is proposed by means of Laplace transform and homotopy perturbation method. The fractional lagrange multiplier is accurately determined by the Laplace transform and the nonlinear one can be easily handled by the use of He’s polynomials. Several fractional nonlinear nonhomogeneous equations are analytically solved as examples and the methodology is demonstrated.


Author(s):  
Rachid Belgacem ◽  
Ahmed Bokhari ◽  
Salih Djilali ◽  
Sunil Kumar

We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix. The efficiency of the presented approach is demonstrated by solving some differential equations. Also, this technique is combined with the standard Laplace Homotopy Perturbation Method. The numerical results highlight that there is a very good agreement between the estimated solutions with exact solutions.


2012 ◽  
Vol 8 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Jagdev Singh ◽  
Devendra Kumar ◽  

Homotopy Perturbation Algorithm Using Laplace Transform for Gas Dynamics EquationIn this paper, we apply a combined form of the Laplace transform method with the homotopy perturbation method to obtain the solution of nonlinear gas dynamics equation. This method is called the homotopy perturbation transform method (HPTM). This technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. The fact that this scheme solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method. The results reveal that the homotopy perturbation transform method (HPTM) is very efficient, simple and can be applied to other nonlinear problems.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Dinkar Sharma ◽  
Prince Singh ◽  
Shubha Chauhan

AbstractIn this paper, a combined form of the Laplace transform method with the homotopy perturbation method (HPTM) is applied to solve nonlinear systems of partial differential equations viz. the system of third order KdV Equations and the systems of coupled Burgers’ equations in one- and two- dimensions. The nonlinear terms can be easily handled by the use of He’s polynomials. The results shows that the HPTM is very efficient, simple and avoids the round-off errors. Four test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM) which shows that this method is a suitable method for solving systems of partial differential equations.


2013 ◽  
Vol 17 (5) ◽  
pp. 1409-1414 ◽  
Author(s):  
Li-Mei Yan

The purpose of this paper is to extend the homotopy perturbation method to fractional heat transfer and porous media equations with the help of the Laplace transform. The fractional derivatives described in this paper are in the Caputo sense. The algorithm is demonstrated to be direct and straightforward, and can be used for many other non-linear fractional differential equations.


2021 ◽  
Vol 14 (1) ◽  
pp. 89-100

Abstract: In this paper, we apply the Homotopy Perturbation Transform Method (HPTM) to obtain the solution of Non-Linear RLC Circuit Equation. This method is a combination of the Laplace transform method with the homotopy perturbation method. The HPTM can provide analytical solutions to nonlinear equations just by employing the initial conditions and the nonlinear term decomposed by using the He’s polynomials. Keywords: Homotopy perturbation, Laplace transform, He’s polynomials, Non-linear RLC circuit equation.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Dinkar Sharma ◽  
Prince Singh ◽  
Shubha Chauhan

AbstractIn this paper, a combined form of the Laplace transform method with the homotopy perturbation method is applied to solve nonlinear fifth order Korteweg de Vries (KdV) equations. The method is known as homotopy perturbation transform method (HPTM). The nonlinear terms can be easily handled by the use of He’s polynomials. Two test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM).


Sign in / Sign up

Export Citation Format

Share Document