scholarly journals Two-dimensional mathematical model of liquid fuel combustion in bubbling fluidized bed applied for a fluidized furnace numerical simulation

2018 ◽  
Vol 22 (2) ◽  
pp. 1121-1135
Author(s):  
Stevan Nemoda ◽  
Milijana Paprika ◽  
Milica Mladenovic ◽  
Ana Marinkovic ◽  
Goran Zivkovic

Lately, experimental methods and numerical simulations are equally employed for the purpose of developing incineration bubbling fluidized bed (BFB) facilities. The paper presents the results of the 2-D CFD model of liquid fuel combustion in BFB, applied for numerical simulation of a fluidized bed furnace. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The proposed numerical model comprises energy equations for all three phases (gas, inert fluidized particles, and liquid fuel), as well as the transport equations of chemical components that are participating in the reactions of combustion and devolatilization. The model equations are solved applying a commercial CFD package, whereby the user submodels were developed for heterogenic fluidized bed combustion of liquid fuels and for interphase drag forces for all three phases. The results of temperature field calculation were compared with the experiments, carried out in-house, on a BFB pilot facility. The numerical experiments, based on the proposed mathematical model, have been used for the purposes of analyzing the impacts of various fuel flow rates, and fluidization numbers, on the combustion efficiency and on the temperature fields in the combustion zone.

AIChE Journal ◽  
2018 ◽  
Vol 64 (11) ◽  
pp. 3857-3867 ◽  
Author(s):  
Hadrien Benoit ◽  
Renaud Ansart ◽  
Hervé Neau ◽  
Pablo Garcia Triñanes ◽  
Gilles Flamant ◽  
...  

Fuel ◽  
2015 ◽  
Vol 150 ◽  
pp. 146-153 ◽  
Author(s):  
M. de las Obras-Loscertales ◽  
T. Mendiara ◽  
A. Rufas ◽  
L.F. de Diego ◽  
F. García-Labiano ◽  
...  

2019 ◽  
Vol 195 ◽  
pp. 106129 ◽  
Author(s):  
Ying Wu ◽  
Daoyin Liu ◽  
Dong Zheng ◽  
Jiliang Ma ◽  
Lunbo Duan ◽  
...  

2018 ◽  
Vol 338 ◽  
pp. 664-676 ◽  
Author(s):  
Wang Lin ◽  
Qi Guoli ◽  
Li Zhenjie ◽  
Liu Songsong ◽  
Muhammad Hassan ◽  
...  

Author(s):  
Zhi-Gang Feng ◽  
Adam Roig

We have developed a Direct Numerical Simulation combined with the Immersed Boundary method (DNS-IB) to study heat transfer in particulate flows. In this method, fluid velocity and temperature fields are obtained by solving the modified momentum and heat transfer equations, which result from the presence of heated particles in the fluid; particles are tracked individually and their velocities and positions are solved based on the equations of linear and angular motions; particle temperature is assumed to be a constant. The momentum and heat exchanges between a particle and the surrounding fluid at its surface are resolved using the immersed boundary method with the direct forcing scheme. The DNS-IB method has been used to study heat transfer of 1024 of heated spheres in a fluidized bed. By exploring the rich data generated from the DNS-IB simulations, we are able to obtain statistically averaged fluid and particle velocity as well as overall heat transfer rate in a fluidized bed.


Fuel ◽  
2007 ◽  
Vol 86 (15) ◽  
pp. 2241-2253 ◽  
Author(s):  
F OKASHA

2013 ◽  
Vol 17 (4) ◽  
pp. 1163-1179
Author(s):  
Milica Mladenovic ◽  
Stevan Nemoda ◽  
Mirko Komatina ◽  
Dragoljub Dakic

The paper deals with the development of mathematical models for detailed simulation of lateral jet penetration into the fluidized bed (FB), primarily from the aspect of feeding of gaseous and liquid fuels into FB furnaces. For that purpose a series of comparisons has been performed between the results of in-house developed procedure- fluid-porous medium numerical simulation of gaseous jet penetration into the fluidized bed, Fluent?s two-fluid Euler-Euler FB simulation model, and experimental results (from the literature) of gaseous jet penetration into the 2D FB. The calculation results, using both models, and experimental data are in good agreement. The developed simulation procedures of jet penetration into the FB are applied to the analysis of the effects, which are registered during the experiments on a fluidized pilot furnace with feeding of liquid waste fuels into the bed, and brief description of the experiments is also presented in the paper. Registered effect suggests that the water in the fuel improved mixing of fuel and oxidizer in the FB furnace, by increasing jet penetration into the FB due to sudden evaporation of water at the entry into the furnace. In order to clarify this effect, numerical simulations of jet penetration into the FB with three-phase systems: gas (fuel, oxidizer, and water vapour), bed particles and water, have been carried out.


Sign in / Sign up

Export Citation Format

Share Document