scholarly journals An approach to computational fluid dynamic air-flow simulation in the internal combustion engine intake manifold

2020 ◽  
Vol 24 (1 Part A) ◽  
pp. 127-136
Author(s):  
Stjepan Galambos ◽  
Nebojsa Nikolic ◽  
Dragan Ruzic ◽  
Jovan Doric

The subject of this paper is modeling of an intake manifold of a four-stroke IC engine using contemporary software tools. Virtual 3D CAD model of an intake manifold was designed based on a real intake manifold of a four-stroke IC engine. Based on the CAD model a 3D CFD model of the intake manifold was created. The modeling has been done with the purpose of simulation of the air flow inside the intake manifold in order to monitor values of the internal pressure during several seconds of the engine operation in three different operating points. Also, an experiment was conducted, which included measurements of intake manifold pressure in the same engine operating points in the course of a time interval of approximately the same duration. The results of both the simulation and the experimental measurements have been shown in the paper proving that the created model was good enough for the intended purpose.

The Internal combustion engine is one of the widely used mechanical system. The primary aspect of all types of engines is the amount of power produced which, is affected by the complete combustion of a mixture of air and fuel. The objective of this present work is to outline the improved performance of single-cylinder Compression Ignition engine with the aid of geometrical modifications of Inlet manifold. The Study is performed on Kirlosakr CI engine. For modeling of engine assembly, CATIA V5 Software has been used. The Numerical simulations are performed with Ansys 14.5 and solver used as CFX. In this work, two different engine models such as Conventional valve and Modified valve with plate is being considered for CFD analysis. The simulation study of air flow motion with a valve lift of 4 mm, 6 mm and 8 mm is performed for both valve configurations. This numerical analysis aims to maximize the air velocity in the inlet valve with minimum turbulence which in turn improves the engine performance. The study is performed on the single cylinder four-stroke variable compression ratio diesel engines. In the present study, the air flow motion inside the intake manifold of an engine is simulated and investigations are performed by considering the six conditions of the intake valve. The results obtained acts as a basis for further investigation of a variety of valve geometry.


Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng ◽  
Lei Shi

The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.


2021 ◽  
Vol 23 (10) ◽  
pp. 318-326
Author(s):  
S. Rajendran ◽  
◽  
K. Ganesan ◽  
K. Sakthivel ◽  
SM. Murugesan ◽  
...  

This research paper reports that in-cylinder flow formation in a combustion engine has a major influence on the combustion, emission and performance characteristics. Air and fuel enters the combustion chamber of an engine throughout the intake manifold with high velocity. So, it introduces a helical roller in the path of inlet stream of mixture. It achieved the swirl by using a component that could be easily integrated into any existing engines at low engine speed. The performance of the engine increases and completes the combustion, leads to reduced emissions and small change in volumetric efficiency. It is also proved that increased swirl movement introduces helical roller that helps the flame spread which used into constant heat transfer rate. This suggests to a new combustion technique that should be developed to yield improved primary combustion processes in-side the engine with significantly reduced exhaust gas emissions.


Author(s):  
Artur Cebula ◽  
Piotr �š ◽  
N.A. wiątek ◽  
Sebastian Kowalczyk

2009 ◽  
Vol 139 (4) ◽  
pp. 3-11
Author(s):  
Jarosław MAMALA

The paper presents the analysis of improvement of spark ignition engine operation indexes by means of short-time supercharging. The simulation and engine test stand investigation results of the air flow in the spark ignition combustion engine intake system have been shown here.


Author(s):  
Joaqui´n Ferna´ndez ◽  
Alfonso Marcos ◽  
Rau´l Barrio ◽  
Eduardo Blanco ◽  
Alejandro Castilla

The intake manifold of a Diesel engine is of significant importance. Several modifications are usually carried out in this system to increase the power generated without modifying the general design of the engine. This work presents a numerical and experimental investigation on the air flow in a commercial Diesel engine. The air average mass flow through the intake manifold was obtained experimentally for the D909 Deutz-Diter Diesel engine. Additionally, a numerical model was created for the test engine. The model reproduces the operating and boundary conditions of the flow and integrates the equations that describe the motion of the fluid. The average mass flow through the engine was obtained from the model and compared with the experimental measurements. The model was used subsequently to investigate the air flow within the engine.


Author(s):  
Weiyang Lin ◽  
Jeff Sterniak ◽  
Stanislav V. Bohac

In the quest for high efficiency IC engine operation, spark assisted compression ignition (SACI) can fill the gap between homogeneous charge compression ignition (HCCI) operation at low load and spark ignited (SI) operation at high load. SACI combustion utilizes a combination of flame propagation and auto-ignition to achieve ignition when unburned temperatures are too low for reliable auto-ignition and the mixture is too dilute for flame propagation with sufficient speed. Stoichiometric SACI combustion with cooled external exhaust gas recirculation (EGR) offers improved thermal efficiency compared to stoichiometric SI operation. It also reduces combustion temperatures and therefore NOx emissions, while still allowing for the use of a three-way catalyst (TWC). This study investigates NOx spikes that can occur during transitions between different SACI operating points as a result of system time lags or mixture deviation from stoichiometry. Load transitions at various stoichiometric SACI operating points are investigated and NOx emissions before and after the TWC are reported. Significant engine-out NOx spikes are observed. A 1200 ppm NOx spike occurs during a load increase from 3 to 6 bar BMEP at 1800 rpm in 2 cycles (0.13 seconds), which is representative of a faster load change in the FTP-75 drive cycle. Observed NOx spikes are attributed to a time lag in external EGR during the transitions. NOx emissions after the TWC are reduced to below 50 ppm, indicating that NOx emissions during these transients can be handled effectively by a TWC.


Author(s):  
P. Sawant ◽  
S. Bari

Naturally aspirated internal combustion (IC) engines with a fixed intake assembly are generally tuned to produce an induction boost at a single engine speed by capitalizing the induction pressure waves only over a narrow speed range. This paper investigates the individual and combined effects of varying intake runner length and intake valve timing on the performance parameters of an IC engine at engine speeds from 3000 rpm to 9000 rpm. The 1-D model of the KTM SI engine built for simulations in Ricardo Wave software is validated with 98% accuracy against experimental test results. The performance parameters thus obtained, as a combined effect, show an average improvement of 7.02% throughout the engine’s speed range. With the co-existence of variable length intake runners and variable intake valve opening timing, the required number of variations to boost the engine performance are found to be reduced making variable intake assembly more feasible.


Sign in / Sign up

Export Citation Format

Share Document