scholarly journals Numerical study on the mixing characteristics under transcritical and supercritical injection using large eddy simulation

2021 ◽  
pp. 136-136
Author(s):  
Wei Wu ◽  
Wenzhi Dong ◽  
Wenjin Qin ◽  
Meng Yue ◽  
Maozhao Xie

Large eddy simulations of cryogenic nitrogen injection are performed on both transcritical and supercritical injection and mainly attentions are focus on the jet disintegration mechanism and mixing layer feature. The simulation results reveal that the thermal disintegration mechanical dominates the disintegration characteristic under supercritical conditions. The jet disintegration is delayed and longer dense core region is detected for the transcritical injection due to the large density gradient effects. Because of this disintegration mechanism, the Reynolds stresses in the transcritical case are significantly suppressed in the turbulent fluctuation. In addition, we define a mixing layer based on the density gradient and thicker mixing layer interfaces are formed in the supercritical case. The relationship between transport properties and the large density gradient are also investigated, results indicate that the large density gradients are influenced by the pseudo critical temperature and transport properties.

Author(s):  
V. A. SABELNIKOV ◽  
◽  
V. V. VLASENKO ◽  
S. BAKHNE ◽  
S. S. MOLEV ◽  
...  

Gasdynamics of detonation waves was widely studied within last hundred years - analytically, experimentally, and numerically. The majority of classical studies of the XX century were concentrated on inviscid aspects of detonation structure and propagation. There was a widespread opinion that detonation is such a fast phenomenon that viscous e¨ects should have insigni¦cant in§uence on its propagation. When the era of calculations based on the Reynolds-averaged Navier- Stokes (RANS) and large eddy simulation approaches came into effect, researchers pounced on practical problems with complex geometry and with the interaction of many physical effects. There is only a limited number of works studying the in§uence of viscosity on detonation propagation in supersonic §ows in ducts (i. e., in the presence of boundary layers).


Author(s):  
Kin’ya Takahashi ◽  
Masataka Miyamoto ◽  
Yasunori Ito ◽  
Toshiya Takami ◽  
Taizo Kobayashi ◽  
...  

The acoustic mechanisms of 2D and 3D edge tones and a 2D small air-reed instrument have been studied numerically with compressible Large Eddy Simulation (LES). Sound frequencies of the 2D and 3D edge tones obtained numerically change with the jet velocity well following Brown’s semi-empirical equation, while that of the 2D air-reed instrument behaves in a different manner and obeys the semi-empirical theory, so called Cremer-Ising-Coltman theory. We have also calculated aerodynamic sound sources for the 2D edge tone and the 2D air-reed instrument relying on Ligthhill’s acoustic analogy and have discussed similarities and differences between them. The sound source of the air-reed instrument is more localized around the open mouth compared with that of the edge tone due to the effect of the strong sound field excited in the resonator.


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


Author(s):  
Elizaveta Ivanova ◽  
Gregory M. Laskowski

This paper presents the results of a numerical study on the predictive capabilities of Large Eddy Simulation (LES) and hybrid RANS/LES methods for heat transfer, mean velocity, and turbulence in a fundamental trailing edge slot. The geometry represents a landless slot (two-dimensional wall jet) with adjustable slot lip thickness. The reference experimental data taken from the publications of Kacker and Whitelaw [1] [2] [3] [4] contains the adiabatic wall effectiveness together with the velocity and the Reynolds-stress profiles for various blowing ratios and slot lip thicknesses. The simulations were conducted at three different lip thickness and several blowing ratio values. The comparison with the experimental data shows a general advantage of LES and hybrid RANS/LES methods against unsteady RANS. The predictive capability of the tested LES models (dynamic ksgs-equation [5] and WALE [6]) was comparable. The Improved Delayed Detached Eddy Simulation (IDDES) hybrid method [7] also shows satisfactory agreement with the experimental data. In addition to the described baseline investigations, the influence of the inlet turbulence boundary conditions and their implication for the initial mixing layer and heat transfer development were studied for both LES and IDDES.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yunfei Ma ◽  
Jiahuan Cui ◽  
Nagabhushana Rao Vadlamani ◽  
Paul Tucker

Inlet distortion often occurs under off-design conditions when a flow separates within an intake and this unsteady phenomenon can seriously impact fan performance. Fan–distortion interaction is a highly unsteady aerodynamic process into which high-fidelity simulations can provide detailed insights. However, due to limitations on the computational resource, the use of an eddy resolving method for a fully resolved fan calculation is currently infeasible within industry. To solve this problem, a mixed-fidelity computational fluid dynamics method is proposed. This method uses the large Eddy simulation (LES) approach to resolve the turbulence associated with separation and the immersed boundary method (IBM) with smeared geometry (IBMSG) to model the fan. The method is validated by providing comparisons against the experiment on the Darmstadt Rotor, which shows a good agreement in terms of total pressure distributions. A detailed investigation is then conducted for a subsonic rotor with an annular beam-generating inlet distortion. A number of studies are performed in order to investigate the fan's influence on the distortions. A comparison to the case without a fan shows that the fan has a significant effect in reducing distortions. Three fan locations are examined which reveal that the fan nearer to the inlet tends to have a higher pressure recovery. Three beams with different heights are also tested to generate various degrees of distortion. The results indicate that the fan can suppress the distortions and that the recovery effect is proportional to the degree of inlet distortion.


Sign in / Sign up

Export Citation Format

Share Document