Acer grandidentatum: Barstow, M. & Crowley, D.

Author(s):  
Keyword(s):  
1984 ◽  
Vol 2 (4) ◽  
pp. 128-130
Author(s):  
E. Sorenson ◽  
C.F. Williams ◽  
R.H. Walser ◽  
T.D. Davis ◽  
P. Barker

The response of dormant canyon maple (Acer grandidentatum Nutt.) seedlings to chilling was investigated. The most rapid, uniform bud break occurred after the plants were chilled for 1,000 or 1,500 hours at 5°C (41 °F). Plant height and caliper were also greater for chilled plants than unchilled controls. These results suggest that A. grandidentatum production can be accelerated by alternately growing the plants in a greenhouse until growth ceases and then chilling them for at least 1,000 hours to overcome rest.


2012 ◽  
Vol 22 (3) ◽  
pp. 305-310 ◽  
Author(s):  
Melody Reed Richards ◽  
Larry A. Rupp

Bigtooth maple (Acer grandidentatum) has potential as a small, water conserving landscape tree in western landscapes. This potential has been hindered in part by the difficulty in asexually propagating superior accessions. The ability of etiolation to enhance rooting of softwood cuttings of selected wild accessions was determined by grafting six accessions onto seedling rootstocks to use as stock plants. Etiolation was applied to stock plants by placing open-ended, black, velour, drawstring bags over the end of pruned shoots at bud swell allowing new shoots to develop and grow out the end of the bag while leaving the base of the shoot covered. In 2009 and 2010, cuttings from etiolated and nonetiolated shoots were treated with 4000 ppm indole-3-butyric acid (IBA) + 2000 ppm naphthaleneacetic acid (NAA), stuck in a premoistened 3 perlite:1 peat (by volume) rooting substrate and placed under intermittent mist. After 4 weeks, 89% (2009) and 85% (2010) of the etiolated cuttings rooted and only 47% (2009) and 17% (2010) of the nonetiolated cuttings rooted. Etiolated cuttings produced on average 11.3 (2009) and 7.2 (2010) roots per cutting and nonetiolated 2.1 (2009) and 0.5 (2010) roots per cutting. Etiolation, and its application through the use of black cloth bags, can be an effective way to increase the rooting of bigtooth maple cuttings and the availability of these plants for use in water conserving landscaping.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 895A-895
Author(s):  
R. Kjelgren ◽  
L.A. Rupp

We investigated how shelters and competing herbaceous vegetation affected tree growth and water relations during establishment. A bunch-type forage grass was concurrently seeded around 1-year-old bigtooth maple (Acer grandidentatum) and gambel oak (Quercus gambelii) planted in a silt loam field soil. During the second year following planting, irrigation was withheld, and midday water potential was measured twice to determine differences in water stress. At the end of the season, we measured total survival, elongative growth, and leaf area, as well as root growth of trees without competition. In the presence of competing vegetation, trees in shelters were less water stressed by –1.0 MPa than those without shelters. All maples without shelters and with competition died, and oak survival was 28%. Survival of both species in shelters was 86%. All trees without competing vegetation survived, but shelters affected maples differently than oaks. Maples without shelters had multiple stems that resulted in less shoot elongation and coarse roots but higher leaf area than those in shelters, and there were no differences in midday water potential. By contrast leaf area, elongation, and root growth of oaks in shelters were not different from those without shelters, but water potential was less negative. Tree shelters mitigated the effects of competition during establishment, but overall growth in shelters varied with species as oaks did not grow as well as maples.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1081D-1081
Author(s):  
Clare Bowen-O'Connor ◽  
John Hubstenberger ◽  
Dawn Van Leeuwen ◽  
Rolston St. Hilaire

Double-node microshoots of bigtooth maple (Acer grandidentatum Nutt.) were rooted in vitro on Driver-Kuniyuki Walnut (DKW) tissue culture media containing indole acetic acid (IAA). Microshoots represented six sources from three locations within Texas and New Mexico. Microshoots were placed in Phytatrays II™ containing DKW media with no plant growth regulator (DKW0) to reduce the high cytokinin levels used for shoot proliferation. Microshoots were induced to form roots for 15 days by placing them on DKW media containing IAA at 0.01, 1, 2.5, 5, 10, 15 or 20 μmol. Rooting frequency, the number of leaves and callus area were recorded every 30 days for 60 days. Rooting frequency increased up to 29% as IAA concentration increased (P= 0.004). However, as much as 71% of shoots for one of the three Guadalupe Mountain, Texas, sources rooted without auxin treatment after 30 days. The IAA concentration also affected the number of leaves per shoot (P= 0.0228) which averaged seven and callus area (P= <0.0001) which averaged 52 mm2. Average leaf size was 307 mm2. We conclude that IAA induces rooting in microshoots of bigtooth maple after 15 days of root induction. However, one source rooted without auxin treatment. The presence of callus does not interfere with root formation.


2012 ◽  
Vol 22 (5) ◽  
pp. 669-676 ◽  
Author(s):  
Melody Reed Richards ◽  
Larry A. Rupp ◽  
Roger Kjelgren ◽  
V. Philip Rasmussen

The potential of bigtooth maple (Acer grandidentatum) as a small, water-conserving landscape tree for the western United States is limited by the selection of superior accessions from a morphologically diverse gene pool and the ability to propagate wild plants in a nursery environment. Superior accessions were selected based primarily on red fall color. Aerial digital images taken during peak fall color in 2007 and 2008 were synchronized with flight global positioning system (GPS) track files using digital image editor software and visually compared with corresponding satellite images to determine the exact latitude and longitude of selected trees on the ground. Trees were physically located using GPS technology then visually evaluated for initial selection. Criteria included fall color, habitat, relative disease and insect resistance, bud quality, and plant form. From 56 observed trees of interest, six were selected for propagation. Through time-course experiments using multistemmed, bigtooth maple seedling rootstocks in a coppiced stoolbed, the optimum time for chip budding scions of wild accessions in northern Utah was determined to be July through mid-August. Further evaluation of accessions for use in the landscape industry is required.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1053A-1053
Author(s):  
Larry A. Rupp ◽  
William A. Varga ◽  
Roger Kjelgren

Bigtoothmaple(Acer grandidentatum Nutt.) is of interest for its fall color and potential use in water-conserving landscapes. Clonal propagation of desirable selections would be beneficial. Since bigtooth maple commonly self-propagates by layering, we explored mound layering as a means of vegetative propagation. A stool bed was established in 1999 with seedlings grown from northern Utah seed. Beginning in 2001, seedlings were dormant pruned to their base and shoots allowed to grow until early July, when treatments were applied. At the time of treatment application for the reported experiments, shoot bases were girdled with 24-gauge copper wire, covered with conifer wood shavings, and kept moist during the growing season. The effects of rooting hormones and enclosure of the rooting environment on rooting were examined. On 7 July 2002, 32 trees were randomly selected and the four tallest shoots within each tree were treated with either 0, 1:5, 1:10, or 1:20 (v/v) solutions of Dip-N-Gro© rooting hormone (1% IBA, 0.5% NAA, boron). There was no significant difference in rooted shoots between treatments and 81% of the trees had at least one rooted shoot. On 9 July 2004, 39 trees were selected and two shoots per tree were girdled. One-half of the stool bed area was treated by underlaying the shavings with BioBarrier© (17.5% trifluralin a.i.). Measurements on 12 Nov. 2004 showed no apparent treatment effect on rooting and 90% of the trees had at least one rooted shoot. This research demonstrates that mound layering is an effective means of rooting shoots of juvenile bigtooth maples. Further research will examine the effectiveness of the technique in propagating mature clones.


2007 ◽  
Vol 43 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Clare Annabel Bowen-O’Connor ◽  
John Hubstenberger ◽  
Cynthia Killough ◽  
Dawn Marie VanLeeuwen ◽  
Rolston St. Hilaire

Sign in / Sign up

Export Citation Format

Share Document