Limax maximus: Rowson, B.

Author(s):  
Keyword(s):  
Author(s):  
B. S. Beltz

The cells which are described in this study surround the salivary nerve of the terrestrial mollusc, Limax maximus. The salivary system of Limax consists of bilateral glands, ducts, and nerves. The salivary nerves originate at the buccal ganglia, which are situated on the posterior face of the buccal mass, and run along the salivary duct to the gland. The salivary nerve branches several times near the gland, and eventually sends processes into the gland.The pore cells begin to appear at the first large branch point of the salivary nerve, near the gland (Figure 1). They follow the nerve distally and eventually accompany the nerve branches into the gland tissue. The cells are 20-50 microns in diameter and contain very small nuclei (1-5 microns) (Figure 2).The cytoplasm of the pore cells is segregated into a storage area of glycogen and an organelle region located in a band around the cell periphery (Figure 3).


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
William Robbins ◽  
Gary Conboy ◽  
Spencer Greenwood ◽  
Roland Schaper

Abstract Background Metastrongyloid parasites Angiostrongylus vasorum and Crenosoma vulpis infect wild and domestic canids and are important pathogens in dogs. Recent studies indicate that gastropod intermediate hosts infected with various metastrongyloids spontaneously shed infective third-stage larvae (L3) into the environment via feces and mucus under laboratory conditions. Shed L3 retain motility up to 120 days, but whether they retain infectivity was unknown. Methods To assess the infectivity of shed L3, the heart/lungs of six red foxes (Vulpes vulpes) were obtained from trappers in Newfoundland, Canada. Lungs were examined for first-stage larvae (L1) by the Baermann technique. A high number of viable A. vasorum L1 and a low number of C. vulpis L1 were recovered from one fox; these were used to infect naïve laboratory-raised Limax maximus. L3 recovered from slugs by artificial digestion were fed to two naïve purpose-bred research beagles (100 L3/dog). L1 shed by these two dogs was used to infect 546 L. maximus (2000–10,000 L1/slug). L3 shedding was induced by anesthetizing slugs in soda water and transferring them into warm (45 °C) tap water for at least 8 h. Shed L3 recovered from slugs were aliquoted on romaine lettuce in six-well tissue culture plates (80–500 L3/well) and stored at 16 °C/75% relative humidity. Four naïve research beagles were then exposed to 100 L3/dog from larvae stored for 0, 2, 4, or 8 weeks, respectively, after shedding. Results All four dogs began shedding C. vulpis L1 by 26–36 days post-infection (PI). All four dogs began shedding A. vasorum L1 by 50 days PI. Conclusions L3 infectivity for the definitive host was retained in both metastrongyloids, indicating the potential for natural infection in dogs through exposure from environmental contamination. As an additional exposure route, eating or licking plant or other material(s) contaminated with metastrongyloid L3 could dramatically increase the number of dogs at risk of infection from these parasites. Graphic Abstract


1993 ◽  
Vol 69 (6) ◽  
pp. 1940-1947 ◽  
Author(s):  
L. D. Rhines ◽  
P. G. Sokolove ◽  
J. Flores ◽  
D. W. Tank ◽  
A. Gelperin

1. The olfactory processing network in the procerebral (PC) lobe of the terrestrial mollusk Limax maximus exhibits a coherent oscillation of local field potential that is modulated by odor input. To understand the cellular basis of this oscillation, we developed a cell culture preparation of isolated PC neurons and studied the responses of isolated cells to stimulation with neurotransmitters known to be present in the PC lobe. 2. The distribution of PC soma diameters suggests at least two different populations of neurons. Approximately 95% of isolated cells had soma diameters of 7-8 microns, with the remaining cells having larger diameters (10-15 microns). 3. Extracellular measurements of action potentials and optical measurements of intracellular calcium concentrations in fura-2-loaded cells were made. Serotonin and dopamine excited PC neurons and promoted transitions from steady to bursty activity. Both amines elicited increases in intracellular calcium, presumably concomitant with the increase in action-potential frequency. 4. Glutamate suppressed action-potential firing and reduced intracellular calcium. This effect was seen most clearly when glutamate was applied to cells excited by high potassium medium. Quisqualate is an effective glutamate agonist in this system, whereas kainate is not. 5. Combined with anatomic and biochemical data and with studies of the effects of these neurotransmitters on the oscillating local field potential of the intact PC network, the data from isolated PC neurons are consistent with the hypothesis that dopamine and serotonin modulate network dynamics, whereas glutamate is involved in generating the basic oscillation of local field potential in the PC. 6. The optical studies of fura-2-loaded cells showed that several treatments that increase the rate of action-potential production lead to elevations in intracellular calcium. Optical studies of intracellular calcium may be useful for multisite measurements of activity in the intact, oscillating PC lobe network.


1925 ◽  
Vol 9 (2) ◽  
pp. 269-284 ◽  
Author(s):  
Otto Glaser

1. For the heart rate in Pterotrachea coronata, intermediate temperatures disclose a thermal increment of 11,200 ±. This value is identical with the one reported by Crozier and Stier for the lamelli-branch, Anodonta. In the pteropod, Tiedemannia neapolitana the same temperatures typically reveal in the heart rate a µ value of 16,200 ± This agrees quantitatively with 16,300 found by Crozier and Stier for the heart of the slug, Limax maximus. 2. At high temperatures the average value of µ for Pterotrachea is 7,300: for Tiedemannia, 7,400. The corresponding averages at the lower limits are 22,000 and 23,000. 3. The great variability found near the edges of the temperature field are explicable in two ways. During intermissions characteristic of high temperatures and occurring also at low, we can assume a restorative process; while at both the upper and lower limits we may, in addition, find that reactions assume control which under ordinary circumstances never do so. Special evidence indicates that the highest temperatures employed, 27°C., and the lowest, 4°C., caused no irreversible changes in mechanism. 4. The theoretical analysis of the experimental facts makes use of Meyerhof's conception of carbohydrate metabolism and projects the cyclical nature of rhythm into the substrate of control. Assuming as a source of energy an original supply of material O, the value of 22,000 ± is assigned provisionally to a mobilization hydrolysis while 11,200 ± and 16,000 ± are attached to oxidative reactions influenced respectively by OH' and possibly Fe, or some other catalyst. The lowest value, 7,300 ± is assumed to indicate a synthetic process (lactic acid → glycogen?), possibly limited by CO2 excretion. In the present state of our knowledge, this distribution and interpretation seems to account reasonably for the experimental facts, but until we know more about the neurogenic controls, is entitled to rank only as an hypothesis.


1989 ◽  
Vol 143 (1) ◽  
pp. 553-557
Author(s):  
KIMBERLY A. SCHAGENE ◽  
IAN G. WELSFORD ◽  
DAVID J. PRIOR ◽  
PAMELA A. BANTA

1977 ◽  
Vol 66 (1) ◽  
pp. 47-64
Author(s):  
P. G. Sokolove ◽  
C. M. Beiswanger ◽  
D. J. Prior ◽  
A. Gelperin

The locomotor activity of the garden slug Limax maximus was examined for components of circadian rhythmicity. Behavioural (running wheel) studies clearly demonstrated that the activity satisfies the principal criteria of circadian rhythmicity. In constant darkness at a constant temperature, the locomotor activity freeran with a period of about 24 h (range 23-6-24-6 h). The rhythm was also expressed in constant light with a period for individual slugs that tended to be shorter in LL than in DD. The period of the rhythm was temperature compensated (11–5-21-5 degrees C) with a Q10 approximately equal to 1–00. The locomotor rhythm could be entrained to 24 h LD cycles such that the circadian activity peak occurred during the dark. The phase angle between the onset of activity and lights-off was not fixed, but was a function of the photoperiod of the entraining light cycle.


1993 ◽  
Vol 69 (6) ◽  
pp. 1930-1939 ◽  
Author(s):  
A. Gelperin ◽  
L. D. Rhines ◽  
J. Flores ◽  
D. W. Tank

1. The procerebral (PC) lobe of the terrestrial mollusk Limax maximus contains a highly interconnected network of local olfactory interneurons that receives direct axonal projections from the two pairs of noses. This olfactory processing network generates a 0.7-Hz oscillation in its local field potential (LFP) that is coherent throughout the network. The oscillating LFP is modulated by natural odorants applied to the neuroepithelium of the superior nose. 2. Two amines known to be present in the PC lobe, dopamine and serotonin, increase the frequency of the PC lobe oscillation and alter its waveform. 3. Glutamate, another putative neurotransmitter known to be present in the lobe, suppresses the PC lobe oscillation by a quisqualate-type receptor and appears to be used by one of the two classes of neurons in the PC lobe to generate the basic LFP oscillation. 4. The known activation of second messengers in Limax PC lobe by dopamine and serotonin together with their effects on the oscillatory rhythm suggest the hypothesis that these amines augment mechanisms mediating synaptic plasticity in the olfactory network, similar to hypothesized effects of amines in vertebrate olfactory systems. 5. The use of a distributed network of interneurons showing coherent oscillations may relate to the highly developed odor recognition and odor learning ability of Limax.


1985 ◽  
Vol 116 (1) ◽  
pp. 323-330
Author(s):  
S. D. Hess ◽  
D. J. Prior

The circadian locomotor rhythm of the terrestrial slug, Limax maximus, was measured with activity wheels during exposure to both humid and drying conditions. Slugs kept in wet wheels (100% RH) remained fully hydrated while those in dry wheels (less than 30% RH) experienced progressive dehydration. Transfer of slugs from a wet wheel to a dry wheel resulted in an increase in the intensity and duration of their patterned locomotor activity that persisted for 3 days. Once the slugs were returned to wet wheels, their locomotor activity returned to normal.


1978 ◽  
Vol 206 (3) ◽  
pp. 371-379 ◽  
Author(s):  
James L. Broyles ◽  
Phillip G. Sokolove
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document