Nothobranchius guentheri: Nagy, B. & Watters, B.

Author(s):  
2020 ◽  
Vol 75 (11) ◽  
pp. 2042-2050 ◽  
Author(s):  
Juntong Wei ◽  
He Qi ◽  
Keke Liu ◽  
Changsheng Zhao ◽  
Yan Bian ◽  
...  

Abstract Metformin, an oral antidiabetic drug, prolongs the life span in nematode, silkworm, and other transgenic rodents, but its effects on longevity and aging-related cognitive ability using natural aging vertebrate models remain poorly understood. The genus of annual fish Nothobranchius show accelerated growth and expression of aging biomarkers. Here, using the short-lived fish Nothobranchius guentheri, we investigated effects of metformin on life span and aging-related cognitive ability and inflammation. Total of 145 fish, 72 fish were fed with metformin in the concentration of 2 mg/g food and 73 fish without metformin from 16 weeks of age until the end of their lives. The chronic feeding with metformin prolonged the life span of the fish and delayed aging with retarded accumulation of lipofuscin in liver, senescence-associated beta-galactosidase (SA-β-gal) activity in skin and serum levels of cholesterol and triglyceride significantly in the 10-month-old fish. Furthermore, metformin improved motor, learning, and memory skills by behavior tests accompanying with reduction of SA-β-gal activity and neurofibrillary degeneration and inhibition of inflammatory response including downregulated NF-κB and proinflammatory cytokines IL-8, TNF-α, and IL-1β expression and enhanced anti-inflammatory cytokine IL-10 level in brain. These findings demonstrate that metformin prolongs the life span and exerts neuroprotective and anti-inflammation function to improve cognitive ability in annual fish. It might be an effective strategy by using metformin to raise the possibility of promoting healthy aging of old population in aging process.


1983 ◽  
Vol 18 (1) ◽  
pp. 29-38 ◽  
Author(s):  
E.L. Cooper ◽  
A. Zapata ◽  
M. Garcia Barrutia ◽  
J.A. Ramirez

Author(s):  
J.L. Brind ◽  
E. Alani ◽  
J.R. Matias ◽  
J. Markofsky ◽  
R.L. Rizer

2021 ◽  
Vol 22 (19) ◽  
pp. 10411
Author(s):  
Marialuisa Aragona ◽  
Caterina Porcino ◽  
Maria Cristina Guerrera ◽  
Giuseppe Montalbano ◽  
Maria Levanti ◽  
...  

Neurotrophins (NTs) and their signal-transducing Trk receptors play a crucial role in the development and maintenance of specific neuronal subpopulations in nervous and sensory systems. NTs are supposed to regulate two sensory systems in fish, the inner ear and the lateral line system (LLS). The latter is one of the major mechanosensory systems in fish. Considering that annual fishes of the genus Nothobranchius, with their short life expectancy, have become a suitable model for aging studies and that the occurrence and distribution of neurotrophin Trk receptors have never been investigated in the inner ear and LLS of killifish (Nothobranchius guentheri), our study aimed to investigate the localization of neurotrophin-specific Trk receptors in mechanosensory systems of N. guentheri. For histological and immunohistochemical analysis, adult specimens of N. guentheri were processed using antibodies against Trk receptors and S100 protein. An intense immunoreaction for TrkA and TrkC was found in the sensory cells of the inner ear as well as in the hair cells of LLS. Moreover, also the neurons localized in the acoustic ganglia displayed a specific immunoreaction for all Trk receptors (TrkA, B, and C) analyzed. Taken together, our results demonstrate, for the first time, that neurotrophins and their specific receptors could play a pivotal role in the biology of the sensory cells of the inner ear and LLS of N. guentheri and might also be involved in the hair cells regeneration process in normal and aged conditions.


Sign in / Sign up

Export Citation Format

Share Document