The Smoluchowski–Kramers approximation for the stochastic Liénard equation by mean-field

1991 ◽  
Vol 23 (2) ◽  
pp. 303-316 ◽  
Author(s):  
Kiyomasa Narita

The oscillator of the Liénard type with mean-field containing a large parameter α < 0 is considered. The solution of the two-dimensional stochastic differential equation with mean-field of the McKean type is taken as the response of the oscillator. By a rigorous evaluation of the upper bound of the displacement process depending on the parameter α, a one-dimensional limit diffusion process as α → ∞is derived and identified. Then our result extends the Smoluchowski–Kramers approximation for the Langevin equation without mean-field to the McKean equation with mean-field.

1991 ◽  
Vol 23 (02) ◽  
pp. 303-316 ◽  
Author(s):  
Kiyomasa Narita

The oscillator of the Liénard type with mean-field containing a large parameter α &lt; 0 is considered. The solution of the two-dimensional stochastic differential equation with mean-field of the McKean type is taken as the response of the oscillator. By a rigorous evaluation of the upper bound of the displacement process depending on the parameter α, a one-dimensional limit diffusion process as α → ∞is derived and identified. Then our result extends the Smoluchowski–Kramers approximation for the Langevin equation without mean-field to the McKean equation with mean-field.


1991 ◽  
Vol 23 (2) ◽  
pp. 317-326 ◽  
Author(s):  
Kiyomasa Narita

Here a response of a non-linear oscillator of the Liénard type with a large parameter α ≥ 0 is formulated as a solution of a two-dimensional stochastic differential equation with mean-field of the McKean type. This solution is governed by a special form of the Fokker–Planck equation such as the Smoluchowski–Kramers equation, which is an equation of motion for distribution functions in position and velocity space describing the Brownian motion of particles in an external field. By a change of time and displacement we find that the velocity process converges to a one-dimensional Ornstein–Uhlenbeck process as α →∞.


1991 ◽  
Vol 23 (02) ◽  
pp. 317-326
Author(s):  
Kiyomasa Narita

Here a response of a non-linear oscillator of the Liénard type with a large parameter α ≥ 0 is formulated as a solution of a two-dimensional stochastic differential equation with mean-field of the McKean type. This solution is governed by a special form of the Fokker–Planck equation such as the Smoluchowski–Kramers equation, which is an equation of motion for distribution functions in position and velocity space describing the Brownian motion of particles in an external field. By a change of time and displacement we find that the velocity process converges to a one-dimensional Ornstein–Uhlenbeck process as α →∞.


2003 ◽  
Vol 10 (2) ◽  
pp. 381-399
Author(s):  
A. Yu. Veretennikov

Abstract We establish sufficient conditions under which the rate function for the Euler approximation scheme for a solution of a one-dimensional stochastic differential equation on the torus is close to that for an exact solution of this equation.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


Author(s):  
Georg A. Gottwald ◽  
Ian Melbourne

A recent paper of Melbourne & Stuart (2011 A note on diffusion limits of chaotic skew product flows. Nonlinearity 24 , 1361–1367 (doi:10.1088/0951-7715/24/4/018)) gives a rigorous proof of convergence of a fast–slow deterministic system to a stochastic differential equation with additive noise. In contrast to other approaches, the assumptions on the fast flow are very mild. In this paper, we extend this result from continuous time to discrete time. Moreover, we show how to deal with one-dimensional multiplicative noise. This raises the issue of how to interpret certain stochastic integrals; it is proved that the integrals are of Stratonovich type for continuous time and neither Stratonovich nor Itô for discrete time. We also provide a rigorous derivation of super-diffusive limits where the stochastic differential equation is driven by a stable Lévy process. In the case of one-dimensional multiplicative noise, the stochastic integrals are of Marcus type both in the discrete and continuous time contexts.


1987 ◽  
Vol 24 (02) ◽  
pp. 370-377 ◽  
Author(s):  
E. J. Pauwels

The purpose of this paper is to show that smoothness conditions on the diffusion and drift coefficient of a one-dimensional stochastic differential equation imply the existence and smoothness of a first-passage density. In order to be able to prove this, we shall show that Brownian motion conditioned to first hit a point at a specified time has the same distribution as a Bessel (3)-process with changed time scale.


Sign in / Sign up

Export Citation Format

Share Document