Ecology of Recent Planktonic Foraminifera: Part I: Areal Distribution in the Western North Atlantic

1959 ◽  
Vol 5 (1) ◽  
pp. 77 ◽  
Author(s):  
Allan W. H. Be
2013 ◽  
Vol 9 (2) ◽  
pp. 859-870 ◽  
Author(s):  
R. J. Telford ◽  
C. Li ◽  
M. Kucera

Abstract. We demonstrate that the temperature signal in the planktonic foraminifera assemblage data from the North Atlantic typically does not originate from near-surface waters and argue that this has the potential to bias sea surface temperature reconstructions using transfer functions calibrated against near-surface temperatures if the thermal structure of the upper few hundred metres of ocean changes over time. CMIP5 climate models indicate that ocean thermal structure in the North Atlantic changed between the Last Glacial Maximum (LGM) and the pre-industrial (PI), with some regions, mainly in the tropics, of the LGM ocean lacking good thermal analogues in the PI. Transfer functions calibrated against different depths reconstruct a marked subsurface cooling in parts of the tropical North Atlantic during the last glacial, in contrast to previous studies that reconstruct only a modest cooling. These possible biases in temperature reconstructions may affect estimates of climate sensitivity based on the difference between LGM and pre-industrial climate. Quantifying these biases has the potential to alter our understanding of LGM climate and improve estimates of climate sensitivity.


1973 ◽  
Vol 3 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Constance Sancetta ◽  
John Imbrie ◽  
N.G. Kipp

AbstractQuantitative paleo-environmental analyses of planktonic foraminifera in 182 samples covering the past 130,000 years in North Atlantic deep-sea core V23-82 yield time series interpreted in terms of changing surface-water conditions. An absolute chronology is estimated by linear interpolation between levels dated by 14C or by stratigraphic correlation with other radiometrically dated climatic records. Significant events include: (1) rapid warming at 127,000 YBP, marking the start of the penultimate North Atlantic and European interglacial; (2) 124,000 YBP temperature maximum (Eemian); (3) 109,000 YBP cooling, correlated with the beginning of the last European glaciation (Würm), and representing a temporary cooling of the North Atlantic; (4) severe cooling 73,000 YBP, marking the start of the last full glacial regime in the North Atlantic; (5) short warm intervals within the last glacial regime dated at 59,000 YBP, 48,000 YBP, and 31,000 YBP; (6) rapid termination of the last glacial interval at 11,000 YBP; (7) a 6000 YBP hypsi-saline, followed by lowering salinity values presumably associated with decreasing flux of Gulf Stream waters over the core site.


2015 ◽  
Vol 11 (4) ◽  
pp. 687-696 ◽  
Author(s):  
I. Hernández-Almeida ◽  
F.-J. Sierro ◽  
I. Cacho ◽  
J.-A. Flores

Abstract. Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral – sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.


1994 ◽  
Vol 41 (1) ◽  
pp. 26-34 ◽  
Author(s):  
John T. Andrews ◽  
Helmut Erlenkeuser ◽  
Katherine Tedesco ◽  
Ali E. Aksu ◽  
A.J.Timothy Jull

AbstractTwo major meltwater events are documented in cores from the NW Labrador Sea. One occurred ca. 20,000 14C yr B.P. in association with deposition of a major detrital carbonate unit. Both prior to and after this event, δ18O values of near-surface planktonic foraminifera were 4.5%, indicating fully enriched glacial values. A younger event (ca. 14,000 14 C yr B.P.) is characterized by a dramatic change in δ18O from 4.5 to 2.0% and coincided with the retreat of ice from the outer SE Baffin Shelf, possibly into Hudson Strait. These meltwater events coincide with Heinrich (H) layers 1 and 2 from North Atlantic sediments. The 14,000 14C yr B.P. meltwater event indicates that the eastern margin of the Laurentide Ice Sheet also underwent rapid retreat at approximately the same time as other ice sheet margins around the NE North Atlantic. A third major detrital carbonate event at the base of HU87-033-009, possibly correlative with Heinrich layer 3, occurred ca. 33,960 ± 675 14 C yr B.P.; however, this is older than the accepted date for H-3 of 27,000 14C yr B.P. and may be H-4.


Sign in / Sign up

Export Citation Format

Share Document