scholarly journals STUDIES ON MEMBRANE TRANSPORT. I. A COMMON TRANSPORT SYSTEM FOR SUGARS AND AMINO ACIDS?

1967 ◽  
Vol 133 (3) ◽  
pp. 630-642 ◽  
Author(s):  
CLARK P. READ
1986 ◽  
Vol 261 (36) ◽  
pp. 17107-17112
Author(s):  
J Bernar ◽  
F Tietze ◽  
L D Kohn ◽  
I Bernardini ◽  
G S Harper ◽  
...  

1967 ◽  
Vol 242 (22) ◽  
pp. 5237-5246 ◽  
Author(s):  
Halvor N. Christensen ◽  
Marie Liang ◽  
Ellen G. Archer
Keyword(s):  

1992 ◽  
Vol 281 (3) ◽  
pp. 717-723 ◽  
Author(s):  
J Bertran ◽  
A Werner ◽  
G Stange ◽  
D Markovich ◽  
J Biber ◽  
...  

Poly(A)+ mRNA was isolated from rabbit kidney cortex and injected into Xenopus laevis oocytes. Injection of mRNA resulted in a time- and dose-dependent increase in Na(+)-independent uptake of L-[3H]alanine and L-[3H]arginine. L-Alanine uptake was stimulated about 3-fold and L-arginine uptake was stimulated about 8-fold after injection of mRNA (25-50 ng, after 3-6 days) as compared with water-injected oocytes. T.I.C. of oocyte extracts suggested that the increased uptake actually represented an increase in the oocyte content of labelled L-alanine and L-arginine. The expressed L-alanine uptake, obtained by subtracting the uptake in water-injected oocytes from that in mRNA-injected oocytes, showed saturability and was inhibited completely by 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and L-arginine. The expressed L-arginine uptake in mRNA-injected oocytes also showed saturability, being completely inhibited by L-dibasic amino acids) and partially inhibited by BCH. Expression of both L-alanine and L-arginine uptake showed clear cis-inhibition by cationic (e.g. L-arginine) and neutral (e.g. L-leucine) amino acids. In all, this points to the expression of a Na(+)-independent transport system with broad specificity (i.e. b degree, (+)-like). In addition, part of the expressed uptake of L-arginine could be due to a system y(+)-like transporter. After size fractionation through a sucrose density gradient, the mRNA species encoding these increased transport activities (Na(+)-independent transport of L-alanine and of L-arginine) were found in fractions of an average mRNA chain-length of 1.8-2.4 kb. On the basis of these results, we conclude that Na(+)-independent transport system(s) for L-alanine and L-arginine from rabbit renal cortical tissues, most likely proximal tubules, are expressed in Xenopus laevis oocytes. These observations may represent the first steps towards expression and cloning of these transport pathways.


2001 ◽  
Vol 281 (6) ◽  
pp. C1757-C1768 ◽  
Author(s):  
Takeo Nakanishi ◽  
Ramesh Kekuda ◽  
You-Jun Fei ◽  
Takahiro Hatanaka ◽  
Mitsuru Sugawara ◽  
...  

We have cloned a new subtype of the amino acid transport system N2 (SN2 or second subtype of system N) from rat brain. Rat SN2 consists of 471 amino acids and belongs to the recently identified glutamine transporter gene family that consists of system N and system A. Rat SN2 exhibits 63% identity with rat SN1. It also shows considerable sequence identity (50–56%) with the members of the amino acid transporter A subfamily. In the rat, SN2 mRNA is most abundant in the liver but is detectable in the brain, lung, stomach, kidney, testis, and spleen. When expressed in Xenopus laevis oocytes and in mammalian cells, rat SN2 mediates Na+-dependent transport of several neutral amino acids, including glycine, asparagine, alanine, serine, glutamine, and histidine. The transport process is electrogenic, Li+tolerant, and pH sensitive. The transport mechanism involves the influx of Na+ and amino acids coupled to the efflux of H+, resulting in intracellular alkalization. Proline, α-(methylamino)isobutyric acid, and anionic and cationic amino acids are not recognized by rat SN2.


2013 ◽  
Vol 305 (6) ◽  
pp. C623-C631 ◽  
Author(s):  
Takuya Matsumoto ◽  
Eiji Nakamura ◽  
Hidehiro Nakamura ◽  
Mariko Hirota ◽  
Ana San Gabriel ◽  
...  

The concentration of free glutamate (Glu) in rat's milk is ∼10 times higher than that in plasma. Previous work has shown that mammary tissue actively transports circulatory leucine (Leu), which is transaminated to synthesize other amino acids such as Glu and aspartate (Asp). To investigate the molecular basis of Leu transport and its conversion into Glu in the mammary gland, we characterized the expression of Leu transporters and [3H]Leu uptake in rat mammary cells. Gene expression analysis indicated that mammary cells express two Leu transporters, LAT1 and LAT2, with LAT1 being more abundant than LAT2. This transport system is sodium independent and transports large neutral amino acids. The Leu transport system in isolated rat mammary cells could be specifically blocked by the LAT1 inhibitors 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH) and triiodothyronine (T3). In organ cultures, Glu secretion was markedly inhibited by these LAT1 inhibitors. Furthermore, the profiles of Leu uptake inhibition by amino acids in mammary cells were similar to those reported for LAT1. In vivo, concentrations of free Glu and Asp increased in milk by oral gavage with Leu at 6, 12, and 18 days of lactation. These results indicate that the main Leu transporter in mammary tissue is LAT1 and the transport of Leu is a limiting factor for the synthesis and release of Glu and Asp into milk. Our studies provide the bases for the molecular mechanism of Leu transport in mammary tissue by LAT1 and its active role on free Glu secretion in milk, which confer umami taste in suckling pups.


Sign in / Sign up

Export Citation Format

Share Document