A derivation of number theory from ancestral theory

1952 ◽  
Vol 17 (3) ◽  
pp. 192-197 ◽  
Author(s):  
John Myhill

Martin has shown that the notions of ancestral and class-inclusion are sufficient to develop the theory of natural numbers in a system containing variables of only one type.The purpose of the present paper is to show that an analogous construction is possible in a system containing, beyond the quantificational level, only the ancestral and the ordered pair.The formulae of our system comprise quantificational schemata and anything which can be obtained therefrom by writing pairs (e.g. (x; y), ((x; y); (x; (y; y))) etc.) for free variables, or by writing ancestral abstracts (e.g. (*xyFxy) etc.) for schematic letters, or both.The ancestral abstract (*xyFxy) means what is usually meant by ; and the formula (*xyFxy)zw answers to Martin's (zw; xy)(Fxy).The system presupposes a non-simple applied functional calculus of the first order, with a rule of substitution for predicate letters; over and above this it has three axioms for the ancestral and two for the ordered pair.

1952 ◽  
Vol 17 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Alonzo Church ◽  
W. V. Quine

In this paper a theorem about numerical relations will be established and shown to have certain consequences concerning decidability in quantification theory, as well as concerning the foundation of number theory. The theorem is that relations of natural numbers are reducible in elementary fashion to symmetric ones; i.e.:Theorem I. For every dyadic relation R of natural numbers there is a symmetric dyadic relation H of natural numbers such that R is definable in terms of H plus just truth-functions and quantification over natural numbers.To state the matter more fully, there is a (well-formed) formula ϕ of pure quantification theory, or first-order functional calculus, which meets these conditions:(a) ϕ has ‘x’ and ‘y’ as sole free individual variables;(b) ϕ contains just one predicate letter, and it is dyadic;(c) for every dyadic relation R of natural numbers there is a symmetric dyadic relation H of natural numbers such that, when the predicate letter in ϕ is interpreted as expressing H, ϕ comes to agree in truth-value with ‘x bears R to y’ for all values of ‘x’ and ‘y’.


1957 ◽  
Vol 22 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Leon Henkin

The concepts of ω-consistency and ω-completeness are closely related. The former concept has been generalized to notions of Γ-consistency and strong Γ-consistency, which are applicable not only to formal systems of number theory, but to all functional calculi containing individual constants; and in this general setting the semantical significance of these concepts has been studied. In the present work we carry out an analogous generalization for the concept of ω-completeness.Suppose, then, that F is an applied functional calculus, and that Γ is a non-empty set of individual constants of F. We say that F is Γ-complete if, whenever B(x) is a formula (containing the single free individual variable x) such that ⊦ B(α) for every α in Γ, then also ⊦ (x)B(x). In the paper “Γ-con” a sequence of increasingly strong concepts, Γ-consistency, n = 1,2, 3,…, was introduced; and it is possible in a formal way to define corresponding concepts of Γn-completeness, as follows. We say that F is Γn-complete if, whenever B(x1,…, xn) is a formula (containing exactly n distinct free variables, namely x1…, xn) such that ⊦ B(α1,…,αn) for all α1,…,αn in Γ, then also ⊦ (X1)…(xn)B(x1,…,xn). However, unlike the situation encountered in the paper “Γ-con”, these definitions are not of interest – for the simple reason that F is Γn-complete if and only if it is Γ-complete, as one easily sees.


1973 ◽  
Vol 38 (2) ◽  
pp. 232-248 ◽  
Author(s):  
Philip T. Shepard

In this paper I shall argue that the presumption of infinitude may be excised from the area of mathematics known as natural number theory with no substantial loss. Except for a few concluding remarks, I shall restrict my concern in here arguing the thesis to the business of constructing and developing a first-order axiomatic system for arithmetic (called ‘FA’ for finite arithmetic) that contains no theorem to the effect that there are infinitely many numbers.The paper will consist of five parts. Part I characterizes the underlying logic of FA. In part II ordering of natural numbers is developed from a restricted set of axioms, induction schemata are proved and a way of expressing finitude presented. A full set of axioms are used in part III to prove working theorems on comparison of size. In part IV an ordinal expression is defined and characteristic theorems proved. Theorems for addition and multiplication are derived in part V from definitions in terms of the ordinal expression of part IV. The crucial final constructions of part V present a new method of replacing recursive characterizations by strict definitions.In view of our resolution not to assume that there are infinitely many numbers, we shall have to deal with the situation where singular arithmetic terms of FA may fail to refer. For I know of no acceptable and systematic way of avoiding such situations. As a further result, singular-term instances of universal generalizations of FA are not to be inferred directly from the generalizations themselves. Nevertheless, (i) (x)(y)(x + y = y + x), for example, and all its instances are provable in FA.


1955 ◽  
Vol 20 (2) ◽  
pp. 115-118 ◽  
Author(s):  
M. H. Löb

If Σ is any standard formal system adequate for recursive number theory, a formula (having a certain integer q as its Gödel number) can be constructed which expresses the proposition that the formula with Gödel number q is provable in Σ. Is this formula provable or independent in Σ? [2].One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the question whether the formula (Ex)(x, a), with Gödel-number a, is provable or not. Here (x, y) is the number-theoretic predicate which expresses the proposition that x is the number of a formal proof of the formula with Gödel-number y.In this note we present a solution of the previous problem with respect to the system Zμ [3] pp. 289–294, and, more generally, with respect to any system whose set of theorems is closed under the rules of inference of the first order predicate calculus, and satisfies the subsequent five conditions, and in which the function (k, l) used below is definable.The notation and terminology is in the main that of [3] pp. 306–326, viz. if is a formula of Zμ containing no free variables, whose Gödel number is a, then ({}) stands for (Ex)(x, a) (read: the formula with Gödel number a is provable in Zμ); if is a formula of Zμ containing a free variable, y say, ({}) stands for (Ex)(x, g(y)}, where g(y) is a recursive function such that for an arbitrary numeral the value of g() is the Gödel number of the formula obtained from by substituting for y in throughout. We shall, however, depart trivially from [3] in writing (), where is an arbitrary numeral, for (Ex){x, ).


1953 ◽  
Vol 18 (2) ◽  
pp. 115-118 ◽  
Author(s):  
John Myhill

The purpose of this paper is to present a system of arithmetic stronger than those usually employed, and to prove some syntactical theorems concerning it.We presuppose the lower functional calculus with identity and functions, and we start with three of Peano's axioms.The other two (0 ϵ N and x ϵ N .⊃. x′ ϵ N) we do not need since our variables are anyhow restricted to natural numbers. Sometimes in the interest of a uniform notation for functions, we write Sx instead of x′.Next we have two axioms for μ (the smallest number such that) as follows.A third axiom for μ must wait until we have defined ≤.Now we introduce the central feature of the system, the following rule of definition.RD. Let Φ be a previously unused symbol. Then we can introduce it by a pair of definitions of the following form (n ≥ 0),where F(x1, …, xn) is a wff in which no symbol occurs which was not previously defined (in particular, not Φ), and in which no free variables occur other than x1, …, xn (and possibly not all of these), and G(x1, …, xn, y) is a wff in which no free variables occur other than x1, …, xn, y (and possibly not all of these), and in which no symbol occurs which was not previously defined, except that Φ may occur but only if its last argument is y.


1962 ◽  
Vol 27 (4) ◽  
pp. 383-390 ◽  
Author(s):  
S. Feferman ◽  
C. Spector

We deal in the following with certain theories S, by which we mean sets of sentences closed under logical deduction. The basic logic is understood to be the classical one, but we place no restriction on the orders of the variables to be used. However, we do assume that we can at least express certain notions from classical first-order number theory within these theories. In particular, there should correspond to each primitive recursive function ξ a formula φ(χ), where ‘x’ is a variable ranging over natural numbers, such that for each numeral ñ, φ(ñ) expresses in the language of S that ξ(η) = 0. Such formulas, when obtained say by the Gödel method of eliminating primitive recursive definitions in favor of arithmetical definitions in +. ·. are called PR-formulas (cf. [1] §2 (C)).


1951 ◽  
Vol 16 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Andrzej Mostowski

We consider here the pure functional calculus of first order as formulated by Church.Church, l.c., p. 79, gives the definition of the validity of a formula in a given set I of individuals and shows that a formula is provable in if and only if it is valid in every non-empty set I. The definition of validity is preceded by the definition of a value of a formula; the notion of a value is the basic “semantical” notion in terms of which all other semantical notions are definable.The notion of a value of a formula retains its meaning also in the case when the set I is empty. We have only to remember that if I is empty, then an m-ary propositional function (i.e. a function from the m-th cartesian power Im to the set {f, t}) is the empty set. It then follows easily that the value of each well-formed formula with free individual variables is the empty set. The values of wffs without free variables are on the contrary either f or t. Indeed, if B has the unique free variable c and ϕ is the value of B, then the value of (c)B according to the definition given by Church is the propositional constant f or t according as ϕ(j) is f for at least one j in I or not. Since, however, there is no j in I, the condition ϕ(j) = t for all j in I is vacuously satisfied and hence the value of (c)B is t.


1962 ◽  
Vol 27 (3) ◽  
pp. 259-316 ◽  
Author(s):  
Solomon Feferman

The theories considered here are based on the classical functional calculus (possibly of higher order) together with a set A of non-logical axioms; they are also assumed to contain classical first-order number theory. In foundational investigations it is customary to further restrict attention to the case that A is recursive, or at least recursively enumerable (an equivalent restriction, by [1]). For such axiomatic theories we have the well-known incompleteness phenomena discovered by Godei [6]. Quite far removed from such theories are those based on non-constructive sets of axioms, for example the set of all true sentences of first-order number theory. According to Tarski's theorem, there is not even an arithmetically definable set of axioms A which will give the same result (cf. [18] for exposition).


1981 ◽  
Vol 4 (3) ◽  
pp. 675-760
Author(s):  
Grażyna Mirkowska

The aim of propositional algorithmic logic is to investigate the properties of program connectives. Complete axiomatic systems for deterministic as well as for nondeterministic interpretations of program variables are presented. They constitute basic sets of tools useful in the practice of proving the properties of program schemes. Propositional theories of data structures, e.g. the arithmetic of natural numbers and stacks, are constructed. This shows that in many aspects PAL is close to first-order algorithmic logic. Tautologies of PAL become tautologies of algorithmic logic after replacing program variables by programs and propositional variables by formulas. Another corollary to the completeness theorem asserts that it is possible to eliminate nondeterministic program variables and replace them by schemes with deterministic atoms.


Author(s):  
Ernesto Copello ◽  
Nora Szasz ◽  
Álvaro Tasistro

Abstarct We formalize in Constructive Type Theory the Lambda Calculus in its classical first-order syntax, employing only one sort of names for both bound and free variables, and with α-conversion based upon name swapping. As a fundamental part of the formalization, we introduce principles of induction and recursion on terms which provide a framework for reproducing the use of the Barendregt Variable Convention as in pen-and-paper proofs within the rigorous formal setting of a proof assistant. The principles in question are all formally derivable from the simple principle of structural induction/recursion on concrete terms. We work out applications to some fundamental meta-theoretical results, such as the Church–Rosser Theorem and Weak Normalization for the Simply Typed Lambda Calculus. The whole development has been machine checked using the system Agda.


Sign in / Sign up

Export Citation Format

Share Document