A finite arithmetic

1973 ◽  
Vol 38 (2) ◽  
pp. 232-248 ◽  
Author(s):  
Philip T. Shepard

In this paper I shall argue that the presumption of infinitude may be excised from the area of mathematics known as natural number theory with no substantial loss. Except for a few concluding remarks, I shall restrict my concern in here arguing the thesis to the business of constructing and developing a first-order axiomatic system for arithmetic (called ‘FA’ for finite arithmetic) that contains no theorem to the effect that there are infinitely many numbers.The paper will consist of five parts. Part I characterizes the underlying logic of FA. In part II ordering of natural numbers is developed from a restricted set of axioms, induction schemata are proved and a way of expressing finitude presented. A full set of axioms are used in part III to prove working theorems on comparison of size. In part IV an ordinal expression is defined and characteristic theorems proved. Theorems for addition and multiplication are derived in part V from definitions in terms of the ordinal expression of part IV. The crucial final constructions of part V present a new method of replacing recursive characterizations by strict definitions.In view of our resolution not to assume that there are infinitely many numbers, we shall have to deal with the situation where singular arithmetic terms of FA may fail to refer. For I know of no acceptable and systematic way of avoiding such situations. As a further result, singular-term instances of universal generalizations of FA are not to be inferred directly from the generalizations themselves. Nevertheless, (i) (x)(y)(x + y = y + x), for example, and all its instances are provable in FA.

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 263
Author(s):  
Yuri N. Lovyagin ◽  
Nikita Yu. Lovyagin

The standard elementary number theory is not a finite axiomatic system due to the presence of the induction axiom scheme. Absence of a finite axiomatic system is not an obstacle for most tasks, but may be considered as imperfect since the induction is strongly associated with the presence of set theory external to the axiomatic system. Also in the case of logic approach to the artificial intelligence problems presence of a finite number of basic axioms and states is important. Axiomatic hyperrational analysis is the axiomatic system of hyperrational number field. The properties of hyperrational numbers and functions allow them to be used to model real numbers and functions of classical elementary mathematical analysis. However hyperrational analysis is based on well-known non-finite hyperarithmetic axiomatics. In the article we present a new finite first-order arithmetic theory designed to be the basis of the axiomatic hyperrational analysis and, as a consequence, mathematical analysis in general as a basis for all mathematical application including AI problems. It is shown that this axiomatics meet the requirements, i.e., it could be used as the basis of an axiomatic hyperrational analysis. The article in effect completes the foundation of axiomatic hyperrational analysis without calling in an arithmetic extension, since in the framework of the presented theory infinite numbers arise without invoking any new constants. The proposed system describes a class of numbers in which infinite numbers exist as natural objects of the theory itself. We also do not appeal to any “enveloping” set theory.


1952 ◽  
Vol 17 (3) ◽  
pp. 192-197 ◽  
Author(s):  
John Myhill

Martin has shown that the notions of ancestral and class-inclusion are sufficient to develop the theory of natural numbers in a system containing variables of only one type.The purpose of the present paper is to show that an analogous construction is possible in a system containing, beyond the quantificational level, only the ancestral and the ordered pair.The formulae of our system comprise quantificational schemata and anything which can be obtained therefrom by writing pairs (e.g. (x; y), ((x; y); (x; (y; y))) etc.) for free variables, or by writing ancestral abstracts (e.g. (*xyFxy) etc.) for schematic letters, or both.The ancestral abstract (*xyFxy) means what is usually meant by ; and the formula (*xyFxy)zw answers to Martin's (zw; xy)(Fxy).The system presupposes a non-simple applied functional calculus of the first order, with a rule of substitution for predicate letters; over and above this it has three axioms for the ancestral and two for the ordered pair.


1962 ◽  
Vol 27 (4) ◽  
pp. 383-390 ◽  
Author(s):  
S. Feferman ◽  
C. Spector

We deal in the following with certain theories S, by which we mean sets of sentences closed under logical deduction. The basic logic is understood to be the classical one, but we place no restriction on the orders of the variables to be used. However, we do assume that we can at least express certain notions from classical first-order number theory within these theories. In particular, there should correspond to each primitive recursive function ξ a formula φ(χ), where ‘x’ is a variable ranging over natural numbers, such that for each numeral ñ, φ(ñ) expresses in the language of S that ξ(η) = 0. Such formulas, when obtained say by the Gödel method of eliminating primitive recursive definitions in favor of arithmetical definitions in +. ·. are called PR-formulas (cf. [1] §2 (C)).


1959 ◽  
Vol 14 ◽  
pp. 129-158
Author(s):  
Sigekatu Kuroda

The consistency of the natural number theory was proved, as is well known, by G. Gentzen in 1935 for the first time in such generality that the mathematical induction can be consistently used for any arbitrary predicate of natural numbers, which is well-formed in his system so that every quantifier ranges over all natural numbers.


1953 ◽  
Vol 18 (2) ◽  
pp. 136-144 ◽  
Author(s):  
Robert McNaughton

These systems are roughly natural number theory in, respectively, nth order function calculus, for all positive integers n. Each of these systems is expressed in the notation of the theory of types, having variables with type subscripts from 1 to n. Variables of type 1 stand for natural numbers, variables of type 2 stand for classes of natural numbers, etc. Primitive atomic wff's (well-formed formulas) of Tn are those of number theory in variables of type 1, and of the following kind for n > 1: xi ϵ yi+1. Other wff's are formed by truth functions and quantifiers in the usual manner. Quantification theory holds for all the variables of Tn. Tn has the axioms Z1 to Z9, which are, respectively, the nine axioms and axiom schemata for the system Z (natural number theory) on p. 371 of [1]. These axioms and axiom schemata contain only variables of type 1, except for the schemata Z2 and Z9, which are as follows:where ‘F(x1)’ can be any wff of Tn. Identity is primitive for variables of type 1; for variables of other types it is defined as follows:


2020 ◽  
Vol 31 (06) ◽  
pp. 667-687
Author(s):  
Jason Bell ◽  
Thomas F. Lidbetter ◽  
Jeffrey Shallit

We prove some new theorems in additive number theory, using novel techniques from automata theory and formal languages. As an example of our method, we prove that every natural number [Formula: see text] is the sum of at most three natural numbers whose base-[Formula: see text] representation has an equal number of [Formula: see text]’s and [Formula: see text]’s.


1952 ◽  
Vol 17 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Alonzo Church ◽  
W. V. Quine

In this paper a theorem about numerical relations will be established and shown to have certain consequences concerning decidability in quantification theory, as well as concerning the foundation of number theory. The theorem is that relations of natural numbers are reducible in elementary fashion to symmetric ones; i.e.:Theorem I. For every dyadic relation R of natural numbers there is a symmetric dyadic relation H of natural numbers such that R is definable in terms of H plus just truth-functions and quantification over natural numbers.To state the matter more fully, there is a (well-formed) formula ϕ of pure quantification theory, or first-order functional calculus, which meets these conditions:(a) ϕ has ‘x’ and ‘y’ as sole free individual variables;(b) ϕ contains just one predicate letter, and it is dyadic;(c) for every dyadic relation R of natural numbers there is a symmetric dyadic relation H of natural numbers such that, when the predicate letter in ϕ is interpreted as expressing H, ϕ comes to agree in truth-value with ‘x bears R to y’ for all values of ‘x’ and ‘y’.


2018 ◽  
Vol 15 ◽  
pp. 8120-8132
Author(s):  
Anatoliy Nikolaychuk

For any natural number was created the supplement sequence, that is convergent together with the original sequence. The parameter - index was defined, that is the same tor both sequences. This new method provides the following results: All natural numbers were distributed into different classes according to the corresponding indexes; The analytic formulas ( not by computer performed routine calculations) were produced, the formulas for groups of consecutive natural numbers of different lengths, having the same index; The new algorithm to find index for any natural number was constructed and proved.


2019 ◽  
Vol 17 ◽  
pp. 19-33
Author(s):  
Anatoliy Nikolaychuk

For any natural number was created the supplement sequence, that is convergent together with the original Collatz sequence. The numerical parameter - index was defined, that is the same for both sequences. This new method provides the following results: All natural numbers were distributed into six different classes; The properties of index were found for the different classes; For any natural number was constructed the bounded sequence of increasing numbers,     that is convergent together with the regular Collatz sequence.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


Sign in / Sign up

Export Citation Format

Share Document