Quantification and the empty domain

1954 ◽  
Vol 19 (3) ◽  
pp. 177-179 ◽  
Author(s):  
W. V. Quine

Quantification theory, or the first-order predicate calculus, is ordinarily so formulated as to provide as theorems all and only those formulas which come out true under all interpretations in all non-empty domains. There are two strong reasons for thus leaving aside the empty domain.(i) Where D is any non-empty domain, any quantificational formula which comes out true under all interpretations in all domains larger than D will come out true also under all interpretations in D. (Cf. [4], p. 92.) Thus, though any small domain has a certain triviality, all but one of them, the empty domain, can be included without cost. To include the empty one, on the other hand, would mean surrendering some formulas which are valid everywhere else and thus generally useful.(ii) An easy supplementary test enables us anyway, when we please, to decide whether a formula holds for the empty domain. We have only to mark the universal quantifications as true and the existential ones as false, and apply truth-table considerations.Incidentally, the existence of that supplementary test shows that there is no difficulty in framing an inclusive quantification theory (i.e., inclusive of the empty domain) if we so desire. A proof in this theory can be made to consist simply of a proof in the exclusive (or usual) theory followed by a check by the method of (ii). We may, however, be curious to see a more direct or autonomous formulation: one which does not consist, like the above, of the exclusive theory plus a rule of expurgation. And, in fact, such formulations have of late been forthcoming: Mostowski [5], Hailperin [3], and, as part of a broader context, Church [2]. I shall not presuppose acquaintance with these papers, except in my final paragraph (and then only with [3]).

1976 ◽  
Vol 41 (1) ◽  
pp. 45-49
Author(s):  
Charles E. Hughes

AbstractA new reduction class is presented for the satisfiability problem for well-formed formulas of the first-order predicate calculus. The members of this class are closed prenex formulas of the form ∀x∀yC. The matrix C is in conjunctive normal form and has no disjuncts with more than three literals, in fact all but one conjunct is unary. Furthermore C contains but one predicate symbol, that being unary, and one function symbol which symbol is binary.


1952 ◽  
Vol 17 (2) ◽  
pp. 105-116 ◽  
Author(s):  
Hao Wang

Certain axiomatic systems involve more than one category of fundamental objects; for example, points, lines, and planes in geometry; individuals, classes of individuals, etc. in the theory of types or in predicate calculi of orders higher than one. It is natural to use variables of different kinds with their ranges respectively restricted to different categories of objects, and to assume as substructure the usual quantification theory (the restricted predicate calculus) for each of the various kinds of variables together with the usual theory of truth functions for the formulas of the system. An axiomatic theory set up in this manner will be called many-sorted. We shall refer to the theory of truth functions and quantifiers in it as its (many-sorted) elementary logic, and call the primitive symbols and axioms (including axiom schemata) the proper primitive symbols and proper axioms of the system. Our purpose in this paper is to investigate the many-sorted systems and their elementary logics.Among the proper primitive symbols of a many-sorted system Tn (n = 2, …, ω) there may be included symbols of some or all of the following kinds: (1) predicates denoting the properties and relations treated in the system; (2) functors denoting the functions treated in the system; (3) constant names for certain objects of the system. We may either take as primitive or define a predicate denoting the identity relation in Tn.


1970 ◽  
Vol 38 ◽  
pp. 145-152
Author(s):  
Akira Nakamura

The purpose of this paper is to present a propositional calculus whose decision problem is recursively unsolvable. The paper is based on the following ideas: (1) Using Löwenheim-Skolem’s Theorem and Surányi’s Reduction Theorem, we will construct an infinitely many-valued propositional calculus corresponding to the first-order predicate calculus.(2) It is well known that the decision problem of the first-order predicate calculus is recursively unsolvable.(3) Thus it will be shown that the decision problem of the infinitely many-valued propositional calculus is recursively unsolvable.


1939 ◽  
Vol 4 (1) ◽  
pp. 1-9 ◽  
Author(s):  
László Kalmár

1. Although the decision problem of the first order predicate calculus has been proved by Church to be unsolvable by any (general) recursive process, perhaps it is not superfluous to investigate the possible reductions of the general problem to simple special cases of it. Indeed, the situation after Church's discovery seems to be analogous to that in algebra after the Ruffini-Abel theorem; and investigations on the reduction of the decision problem might prepare the way for a theory in logic, analogous to that of Galois.It has been proved by Ackermann that any first order formula is equivalent to another having a prefix of the form(1) (Ex1)(x2)(Ex3)(x4)…(xm).On the other hand, I have proved that any first order formula is equivalent to some first order formula containing a single, binary, predicate variable. In the present paper, I shall show that both results can be combined; more explicitly, I shall prove theTheorem. To any given first order formula it is possible to construct an equivalent one with a prefix of the form (1) and a matrix containing no other predicate variable than a single binary one.2. Of course, this theorem cannot be proved by a mere application of the Ackermann reduction method and mine, one after the other. Indeed, Ackermann's method requires the introduction of three auxiliary predicate variables, two of them being ternary variables; on the other hand, my reduction process leads to a more complicated prefix, viz.,(2) (Ex1)…(Exm)(xm+1)(xm+2)(Exm+3)(Exm+4).


1969 ◽  
Vol 34 (2) ◽  
pp. 226-252 ◽  
Author(s):  
Jon Barwise

In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.


1955 ◽  
Vol 20 (2) ◽  
pp. 115-118 ◽  
Author(s):  
M. H. Löb

If Σ is any standard formal system adequate for recursive number theory, a formula (having a certain integer q as its Gödel number) can be constructed which expresses the proposition that the formula with Gödel number q is provable in Σ. Is this formula provable or independent in Σ? [2].One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the question whether the formula (Ex)(x, a), with Gödel-number a, is provable or not. Here (x, y) is the number-theoretic predicate which expresses the proposition that x is the number of a formal proof of the formula with Gödel-number y.In this note we present a solution of the previous problem with respect to the system Zμ [3] pp. 289–294, and, more generally, with respect to any system whose set of theorems is closed under the rules of inference of the first order predicate calculus, and satisfies the subsequent five conditions, and in which the function (k, l) used below is definable.The notation and terminology is in the main that of [3] pp. 306–326, viz. if is a formula of Zμ containing no free variables, whose Gödel number is a, then ({}) stands for (Ex)(x, a) (read: the formula with Gödel number a is provable in Zμ); if is a formula of Zμ containing a free variable, y say, ({}) stands for (Ex)(x, g(y)}, where g(y) is a recursive function such that for an arbitrary numeral the value of g() is the Gödel number of the formula obtained from by substituting for y in throughout. We shall, however, depart trivially from [3] in writing (), where is an arbitrary numeral, for (Ex){x, ).


Sign in / Sign up

Export Citation Format

Share Document