An intuitionistically plausible interpretation of intuitionistic logic

1977 ◽  
Vol 42 (4) ◽  
pp. 564-578 ◽  
Author(s):  
H. C. M. de Swart

Let IPC be the intuitionistic first-order predicate calculus. From the definition of derivability in IPC the following is clear:(1) If A is derivable in IPC, denoted by “⊦IPCA”, then A is intuitively true, that means, true according to the intuitionistic interpretation of the logical symbols. To be able to settle the converse question: “if A is intuitively true, then ⊦IPCA”, one should make the notion of intuitionistic truth more easily amenable to mathematical treatment. So we have to look then for a definition of “A is valid”, denoted by “⊨A”, such that the following holds:(2) If A is intuitively true, then ⊨ A.Then one might hope to be able to prove(3) If ⊨ A, then ⊦IPCA.If one would succeed in finding a notion of “⊨ A”, such that all the conditions (1), (2) and (3) are satisfied, then the chain would be closed, i.e. all the arrows in the scheme below would hold.Several suggestions for ⊨ A have been made in the past: Topological and algebraic interpretations, see Rasiowa and Sikorski [1]; the intuitionistic models of Beth, see [2] and [3]; the interpretation of Grzegorczyk, see [4] and [5]; the models of Kripke, see [6] and [7]. In Thirty years of foundational studies, A. Mostowski [8] gives a review of the interpretations, proposed for intuitionistic logic, on pp. 90–98.

1958 ◽  
Vol 23 (4) ◽  
pp. 417-419 ◽  
Author(s):  
R. L. Goodstein

Mr. L. J. Cohen's interesting example of a logical truth of indirect discourse appears to be capable of a simple formalisation and proof in a variant of first order predicate calculus. His example has the form:If A says that anything which B says is false, and B says that something which A says is true, then something which A says is false and something which B says is true.Let ‘A says x’ be formalised by ‘A(x)’ and let assertions of truth and falsehood be formalised as in the following table.We treat both variables x and predicates A (x) as sentences and add to the familiar axioms and inference rules of predicate logic a rule permitting the inference of A(p) from (x)A(x), where p is a closed sentence.We have to prove that from


1976 ◽  
Vol 41 (4) ◽  
pp. 705-718 ◽  
Author(s):  
M. H. Löb

Some syntactically simple fragments of intuitionistic logic possess considerable expressive power compared with their classical counterparts.In particular, we consider in this paper intuitionistic second order propositional logic (ISPL) a formalisation of which may be obtained by adding to the intuitionistic propositional calculus quantifiers binding propositional variables together with the usual quantifier rules and the axiom scheme (Ex), where is a formula not containing x.The main purpose of this paper is to show that the classical first order predicate calculus with identity can be (isomorphically) embedded in ISPL.It turns out an immediate consequence of this that the classical first order predicate calculus with identity can also be embedded in the fragment (PLA) of the intuitionistic first order predicate calculus whose only logical symbols are → and (.) (universal quantifier) and the only nonlogical symbol (apart from individual variables and parentheses) a single monadic predicate letter.Another consequence is that the classical first order predicate calculus can be embedded in the theory of Heyting algebras.The undecidability of the formal systems under consideration evidently follows immediately from the present results.We shall indicate how the methods employed may be extended to show also that the intuitionistic first order predicate calculus with identity can be embedded in both ISPL and PLA.For the purpose of the present paper it will be convenient to use the following formalisation (S) of ISPL based on [3], rather than the one given above.


1973 ◽  
Vol 38 (3) ◽  
pp. 410-412
Author(s):  
John Lake

Ackermann's set theory A* is usually formulated in the first order predicate calculus with identity, ∈ for membership and V, an individual constant, for the class of all sets. We use small Greek letters to represent formulae which do not contain V and large Greek letters to represent any formulae. The axioms of A* are the universal closures ofwhere all free variables are shown in A4 and z does not occur in the Θ of A2.A+ is a generalisation of A* which Reinhardt introduced in [3] as an attempt to provide an elaboration of Ackermann's idea of “sharply delimited” collections. The language of A+ is that of A*'s augmented by a new constant V′, and its axioms are A1–A3, A5, V ⊆ V′ and the universal closure ofwhere all free variables are shown.Using a schema of indescribability, Reinhardt states in [3] that if ZF + ‘there exists a measurable cardinal’ is consistent then so is A+, and using [4] this result can be improved to a weaker large cardinal axiom. It seemed plausible that A+ was stronger than ZF, but our main result, which is contained in Theorem 5, shows that if ZF is consistent then so is A+, giving an improvement on the above results.


1966 ◽  
Vol 31 (1) ◽  
pp. 23-45 ◽  
Author(s):  
M. H. Löb

By ΡL we shall mean the first order predicate logic based on S4. More explicitly: Let Ρ0 stand for the first order predicate calculus. The formalisation of Ρ0 used in the present paper will be given later. ΡL is obtained from Ρ0 by adding the rules the propositional constant □ and


1975 ◽  
Vol 40 (2) ◽  
pp. 151-158 ◽  
Author(s):  
John Lake

Our results concern the natural models of Ackermann-type set theories, but they can also be viewed as results about the definability of ordinals in certain sets.Ackermann's set theory A was introduced in [1] and it is now formulated in the first order predicate calculus with identity, using ∈ for membership and an individual constant V for the class of all sets. We use the letters ϕ, χ, θ, and χ to stand for formulae which do not contain V and capital Greek letters to stand for any formulae. Then, the axioms of A* are the universal closures ofwhere all the free variables are shown in A4 and z does not occur in the Θ of A2. A is the theory A* − A5.Most of our notation is standard (for instance, α, β, γ, δ, κ, λ, ξ are variables ranging over ordinals) and, in general, we follow the notation of [7]. When x ⊆ Rα, we use Df(Rα, x) for the set of those elements of Rα which are definable in 〈Rα, ∈〉, using a first order ∈-formula and parameters from x.We refer the reader to [7] for an outline of the results which are known about A, but we shall summarise those facts which are frequently used in this paper.


1950 ◽  
Vol 15 (3) ◽  
pp. 161-173 ◽  
Author(s):  
László Kalmár ◽  
János Surányi

It has been proved by Pepis that any formula of the first-order predicate calculus is equivalent (in respect of being satisfiable) to another with a prefix of the formcontaining a single existential quantifier. In this paper, we shall improve this theorem in the like manner as the Ackermann and the Gödel reduction theorems have been improved in the preceding papers of the same main title. More explicitly, we shall prove theTheorem 1. To any given first-order formula it is possible to construct an equivalent one with a prefix of the form (1) and a matrix containing no other predicate variable than a single binary one.An analogous theorem, but producing a prefix of the formhas been proved in the meantime by Surányi; some modifications in the proof, suggested by Kalmár, led to the above form.


1971 ◽  
Vol 36 (2) ◽  
pp. 262-270
Author(s):  
Shoji Maehara ◽  
Gaisi Takeuti

A second order formula is called Π1 if, in its prenex normal form, all second order quantifiers are universal. A sequent F1, … Fm → G1 …, Gn is called Π1 if a formulais Π1If we consider only Π1 sequents, then we can easily generalize the completeness theorem for the cut-free first order predicate calculus to a cut-free Π1 predicate calculus.In this paper, we shall prove two interpolation theorems on the Π1 sequent, and show that Chang's theorem in [2] is a corollary of our theorem. This further supports our belief that any form of the interpolation theorem is a corollary of a cut-elimination theorem. We shall also show how to generalize our results for an infinitary language. Our method is proof-theoretic and an extension of a method introduced in Maehara [5]. The latter has been used frequently to prove the several forms of the interpolation theorem.


1958 ◽  
Vol 23 (1) ◽  
pp. 7-12 ◽  
Author(s):  
J. R. Shoenfield

The purpose of this paper is to give a partial answer to the question: How much is the induction axiom weakened if it is applied only to sentences with no bound variables? It is well known that for the full Peano arithmetic this is a weakening ([1] p. 90). We consider Peano arithmetic without multiplication, and give a full answer to the question. It turns out that only four new theorems can be proved from the weakened induction axiom; i.e., all further consequences of this axiom are derivable from these four.We consider a system T formulated within the first-order predicate calculus with equality. The system contains the constant 0 and the three function symbols S (successor), P (predecessor), and +. The non-logical axioms are:A sentence is open if it contains no bound variables. We obtain the system TI from T by adding the rule of inference:(I) If A(x) is an open sentence, infer A(x) from A(0) and A(x) ⊃ A(Sx).The following open sentences are easily proved in TI:The system formed by adding (B1) - (B4) to T is called T′.We abbreviate SS … Sx, where S occurs n times, to Snx. Similarly, we abbreviate (… (x+x)+ …) + x, where x occurs n times, to nx. A term of the form n1x1 + … + nkXk + Sp0 is called simple. An equation between simple terms is called a simple equation.


1976 ◽  
Vol 41 (1) ◽  
pp. 45-49
Author(s):  
Charles E. Hughes

AbstractA new reduction class is presented for the satisfiability problem for well-formed formulas of the first-order predicate calculus. The members of this class are closed prenex formulas of the form ∀x∀yC. The matrix C is in conjunctive normal form and has no disjuncts with more than three literals, in fact all but one conjunct is unary. Furthermore C contains but one predicate symbol, that being unary, and one function symbol which symbol is binary.


1963 ◽  
Vol 14 (1) ◽  
pp. 75-104 ◽  
Author(s):  
G. J. Hancock

SummaryThe validity and applicability of the static margin (stick fixed) Kn,where as defined by Gates and Lyon is shown to be restricted to the conventional flexible aircraft. Alternative suggestions for the definition of static margin are put forward which can be equally applied to the conventional flexible aircraft of the past and the integrated flexible aircraft of the future. Calculations have been carried out on simple slender plate models with both linear and non-linear aerodynamic forces to assess their static stability characteristics.


Sign in / Sign up

Export Citation Format

Share Document