Variations on promptly simple sets

1985 ◽  
Vol 50 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Wolfgang Maass

In this paper we answer the question of whether all low sets with the splitting property are promptly simple. Further we try to make the role of lowness properties and prompt simplicity in the construction of automorphisms of the lattice of r.e. (recursively enumerable) sets more perspicuous. It turns out that two new properties of r.e. sets, which are dual to each other, are essential in this context: the prompt and the low shrinking property.In an earlier paper [4] we had shown (using Soare's automorphism construction [10] and [12]) that all r.e. generic sets are automorphic in the lattice ℰ of r.e. sets under inclusion. We called a set A promptly simple if Ā is infinite and there is a recursive enumeration of A and the r.e. sets (We)e∈N such that if We is infinite then there is some element (or equivalently: infinitely many elements) x of We such that x gets into A “promptly” after its appearance in We (i.e. for some fixed total recursive function f we have x ∈ Af(s), where s is the stage at which x entered We). Prompt simplicity in combination with lowness turned out to capture those properties of r.e. generic sets that were used in the mentioned automorphism result. In a following paper with Shore and Stob [7] we studied an ℰ-definable consequence of prompt simplicity: the splitting property.


1988 ◽  
Vol 53 (4) ◽  
pp. 1110-1137 ◽  
Author(s):  
Klaus Ambos-Spies ◽  
Peter A. Fejer

A recursively enumerable splitting of an r.e. set A is a pair of r.e. sets B and C such that A = B ∪ C and B ∩ C = ⊘. Since for such a splitting deg A = deg B ∪ deg C, r.e. splittings proved to be a quite useful notion for investigations into the structure of the r.e. degrees. Important splitting theorems, like Sacks splitting [S1], Robinson splitting [R1] and Lachlan splitting [L3], use r.e. splittings.Since each r.e. splitting of a set induces a splitting of its degree, it is natural to study the relation between the degrees of r.e. splittings and the degree splittings of a set. We say a set A has the strong universal splitting property (SUSP) if each splitting of its degree is represented by an r.e. splitting of itself, i.e., if for deg A = b ∪ c there is an r.e. splitting B, C of A such that deg B = b and deg C = c. The goal of this paper is the study of this splitting property.In the literature some weaker splitting properties have been studied as well as splitting properties which imply failure of the SUSP.



1978 ◽  
Vol 43 (2) ◽  
pp. 322-330 ◽  
Author(s):  
Richard A. Shore

Ever since Post [4] the structure of recursively enumerable sets and their classification has been an important area in recursion theory. It is also intimately connected with the study of the lattices and of r.e. sets and r.e. sets modulo finite sets respectively. (This lattice theoretic viewpoint was introduced by Myhill [3].) Key roles in both areas have been played by the lattice of r.e. supersets, , of an r.e. set A (along with the corresponding modulo finite sets) and more recently by the group of automorphisms of and . Thus for example we have Lachlan's deep result [1] that Post's notion of A being hyperhypersimple is equivalent to (or ) being a Boolean algebra. Indeed Lachlan even tells us which Boolean algebras appear as —precisely those with Σ3 representations. There are also many other simpler but still illuminating connections between the older typology of r.e. sets and their roles in the lattice . (r-maximal sets for example are just those with completely uncomplemented.) On the other hand, work on automorphisms by Martin and by Soare [8], [9] has shown that most other Post type conditions on r.e. sets such as hypersimplicity or creativeness which are not obviously lattice theoretic are in fact not invariant properties of .In general the program of analyzing and classifying r.e. sets has been directed at the simple sets. Thus the subtypes of simple sets studied abound — between ten and fifteen are mentioned in [5] and there are others — but there seems to be much less known about the nonsimple sets. The typologies introduced for the nonsimple sets begin with Post's notion of creativeness and add on a few variations. (See [5, §8.7] and the related exercises for some examples.) Although there is a classification scheme for r.e. sets along the simple to creative line (see [5, §8.7]) it is admitted to be somewhat artificial and arbitrary. Moreover there does not seem to have been much recent work on the nonsimple sets.





1971 ◽  
Vol 36 (2) ◽  
pp. 271-287 ◽  
Author(s):  
Donald A. Alton

Let W0, W1 … be one of the usual enumerations of recursively enumerable (r.e.) subsets of the set N of nonnegative integers. (Background information will be given later.) Suggestions of Anil Nerode led to the followingDefinitions. Let B be a subset of N and let ψ be a partial recursive function.



1967 ◽  
Vol 32 (2) ◽  
pp. 162-172 ◽  
Author(s):  
Robert W. Robinson

In §1 is given a characterization of strongly hypersimple sets in terms of weak arrays which is in appearance more restrictive than the original definition. §1 also includes a new characterization of hyperhypersimple sets. This one is interesting because in §2 a characterization of dense simple sets is shown which is identical in all but the use of strong arrays instead of weak arrays. Another characterization of hyperhypersimple sets, in terms of descending sequences of sets, is given in §3. Also a theorem showing strongly contrasting behavior for simple sets is presented. In §4 a r-maximal set which is not contained in any maximal set is constructed.



1973 ◽  
Vol 38 (4) ◽  
pp. 579-593 ◽  
Author(s):  
M. Blum ◽  
I. Marques

An important goal of complexity theory, as we see it, is to characterize those partial recursive functions and recursively enumerable sets having some given complexity properties, and to do so in terms which do not involve the notion of complexity.As a contribution to this goal, we provide characterizations of the effectively speedable, speedable and levelable [2] sets in purely recursive theoretic terms. We introduce the notion of subcreativeness and show that every program for computing a partial recursive function f can be effectively speeded up on infinitely many integers if and only if the graph of f is subcreative.In addition, in order to cast some light on the concepts of effectively speedable, speedable and levelable sets we show that all maximal sets are levelable (and hence speedable) but not effectively speedable and we exhibit a set which is not levelable in a very strong sense but yet is effectively speedable.



Author(s):  
Raymond M. Smullyan

The topics of this chapter are of more specialized interest and are not necessary for the results of our final chapter. They will probably be of more interest to the specialist (particularly the results of Section III) than to the general reader. We know from Chapter 2 that if all recursive sets are representable in S, then S is undecidable. We also know from Chapter 4 that if all recursively enumerable sets are representable in S, then S is not only undecidable but generative. We might also ask the question, If all recursive sets are representable in S, is S necessarily generative? Shoenfield [1961] answered this question negatively. He constructed an axiomatizable system in which all recursive sets are representable, and so the system is undecidable, but he showed that the system is not creative. Let us say that all recursive sets are uniformly representable in S if there is a recursive function g(x) such that for any number i, if ωi is a recursive set, then g(i) is the Godel number of a formula which represents ωi in S. We will show that if all recursive sets are uniformly representable in S, then S is generative. We also showed in Chapter 2 that if all recursive sets are definable in S and S is consistent, then the pair (P,R) of its nuclei is recursively inseparable. Under the same hypothesis, is the pair (P,R) necessarily effectively inseparable? The answer is no. In Shoenfield’s system all recursive sets are not only representable, but definable. However, the set P is not creative. Hence the pair (P, R) of nuclei of the system, though recursively inseparable, is not effectively inseparable.



1994 ◽  
Vol 59 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Joseph Barback

AbstractIn [14] J. Hirschfeld established the close connection of models of the true AE sentences of Peano Arithmetic and homomorphic images of the semiring of recursive functions. This fragment of Arithmetic includes most of the familiar results of classical number theory. There are two nice ways that such models appear in the isols. One way was introduced by A. Nerode in [20] and is referred to in the literature as Nerode Semirings. The other way is called a tame model. It is very similar to a Nerode Semiring and was introduced in [6]. The model theoretic properties of Nerode Semirings and tame models have been widely studied by T. G. McLaughlin ([16], [17], and [18]).In this paper we introduce a new variety of tame model called a torre model. It has as a generator an infinite regressive isol with a nice structural property relative to recursively enumerable sets and their extensions to the isols. What is then obtained is a nonstandard model in the isols of the fragment of Peano Arithmetic with the following property: Let T be a torre model. Let f be any recursive function, and let fΛ be its extension to the isols. If there is an isol A with fΛ(A) ϵ T, then there is also an isol B ϵ T with fΛ(B) = fΛ(A).



Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.



Sign in / Sign up

Export Citation Format

Share Document