Algebraically closed commutative rings

1973 ◽  
Vol 38 (3) ◽  
pp. 493-499 ◽  
Author(s):  
G. L. Cherlin

A commutative ring A is said to be algebraically closed if every finite system of polynomial equations and inequations in one or more variables with coefficients in A which has a solution in some (commutative) extension of A already has a solution in A. Abraham Robinson's study of model-theoretic forcing has provided powerful new tools for the study of algebraically closed structures in general, and will be applied here to the study of algebraically closed commutative rings. Familiarity with the model-theoretic notions connected with the study of algebraically closed structures is assumed; for background consult [1], [2], and [3].Our main results are the following:1. The theory of commutative rings with identity has no model companion in the sense of Robinson.2. The Hilbert Nullstellensatz, suitably formulated for the class of algebraically closed commutative rings, holds for finitely generated polynomial ideals but fails for certain infinitely generated polynomial ideals.3. If A is algebraically closed, then A/rad A need not be algebraically closed as a semiprime ring: If A is finitely generic then A/rad A is algebraically closed as a semiprime ring, but if A is infinitely generic then A/rad A is not algebraically closed as a semiprime ring.


1979 ◽  
Vol 44 (1) ◽  
pp. 89-94 ◽  
Author(s):  
K.-P. Podewski ◽  
Joachim Reineke

A commutative ring R with identity is called a local ring if R has only one maximal ideal. This is equivalent to saying that the sum of two nonunits is a non-unit. Therefore the theory of all commutative local rings is axiomatizible by a finite set of A2-sentences. A commutative local ring with identity is said to be an algebraically closed local ring if every finite system of polynomial equations and inequations in one or more variables with coefficients in R which has a solution in some commutative local extension of R already has a solution in R. Much work connected with algebraically closed structures of classes of rings has been done, for example by Cherlin [2], Macintyre [4] and Lipschitz and Saracino [3]. We want to show similar results for commutative local rings with identity. Our main results are the following:Theorem. The theory of commutative local rings with identity has no model-companion.The finitely generic and infinitely generic local rings are algebraically closed local rings.Theorem. There is an A3 sentence which holds for all finitely generic local rings whose negation holds in every infinitely generic local ring.



Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).



2018 ◽  
Vol 2020 (1) ◽  
pp. 112-166 ◽  
Author(s):  
Matthias Aschenbrenner ◽  
Anatole Khélif ◽  
Eudes Naziazeno ◽  
Thomas Scanlon

AbstractWe characterize those finitely generated commutative rings which are (parametrically) bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-interpretable with $(\mathbb{N},{+},{\times })$ if and only if the space of non-maximal prime ideals of A is nonempty and connected in the Zariski topology and the nilradical of A has a nontrivial annihilator in $\mathbb{Z}$. Notably, by constructing a nontrivial derivation on a nonstandard model of arithmetic we show that the ring of dual numbers over $\mathbb{Z}$ is not bi-interpretable with $\mathbb{N}$.



Author(s):  
R. Y. Sharp

In 5, I provided a method whereby the study of an Artinian module A over a commutative ring R (throughout the paper, R will denote a commutative ring with identity) can, for some purposes at least, be reduced to the study of an Artinian module A' over a complete (Noetherian) local ring; in the latter situation, Matlis' duality 1 (alternatively, see 6, ch. 5) is available, and this means that the investigation can often be converted into a dual one about a finitely generated module over a complete (Noetherian) local ring.



2020 ◽  
Vol 32 (1) ◽  
pp. 235-267 ◽  
Author(s):  
Michal Hrbek ◽  
Jan Šťovíček

AbstractWe classify all tilting classes over an arbitrary commutative ring via certain sequences of Thomason subsets of the spectrum, generalizing the classification for noetherian commutative rings by Angeleri, Pospíšil, ŠÅ¥ovíček and Trlifaj (2014). We show that the n-tilting classes can equivalently be expressed as classes of all modules vanishing in the first n degrees of one of the following homology theories arising from a finitely generated ideal: {\operatorname{Tor}_{*}(R/I,-)}, Koszul homology, Čech homology, or local homology (even though in general none of those theories coincide). Cofinite-type n-cotilting classes are described by vanishing of the corresponding cohomology theories. For any cotilting class of cofinite type, we also construct a corresponding cotilting module, generalizing the construction of Šťovíček, Trlifaj and Herbera (2014). Finally, we characterize cotilting classes of cofinite type amongst the general ones, and construct new examples of n-cotilting classes not of cofinite type, which are in a sense hard to tell apart from those of cofinite type.



1980 ◽  
Vol 32 (6) ◽  
pp. 1277-1287 ◽  
Author(s):  
B. Sarath

The main object of this paper is to study when infective noetherian modules are artinian. This question was first raised by J. Fisher and an example of an injective noetherian module which is not artinian is given in [9]. However, it is shown in [4] that over commutative rings, and over hereditary noetherian P.I rings, injective noetherian does imply artinian. By combining results of [6] and [4] it can be shown that the above implication is true over any noetherian P.I ring. It is shown in this paper that injective noetherian modules are artinian over rings finitely generated as modules over their centers, and over semiprime rings of Krull dimension 1. It is also shown that every injective noetherian module over a P.I ring contains a simple submodule. Since any noetherian injective module is a finite direct sum of indecomposable injectives it suffices to study when such injectives are artinian. IfQis an injective indecomposable noetherian module, thenQcontains a non-zero submoduleQ0such that the endomorphism rings ofQ0and all its submodules are skewfields. Over a commutative ring, such aQ0is simple. In the non-commutative case very little can be concluded, and many of the difficulties seem to arise here.



2016 ◽  
Vol 16 (08) ◽  
pp. 1750143 ◽  
Author(s):  
D. D. Anderson ◽  
Sangmin Chun

Let [Formula: see text] be a commutative ring and [Formula: see text] an [Formula: see text]-module. Let [Formula: see text] and [Formula: see text]. [Formula: see text] satisfies Property [Formula: see text] (respectively, Property [Formula: see text]) if for each finitely generated ideal [Formula: see text] (respectively, finitely generated submodule [Formula: see text]) ann[Formula: see text] (respectively, ann[Formula: see text]). The ring [Formula: see text] satisfies Property [Formula: see text] if [Formula: see text] does. We study rings and modules satisfying Property [Formula: see text] or Property [Formula: see text]. A number of examples are given, many using the method of idealization.



2001 ◽  
Vol 43 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Patrick F. Smith

The radical of a module over a commutative ring is the intersection of all prime submodules. It is proved that if R is a commutative domain which is either Noetherian or a UFD then R is one-dimensional if and only if every (finitely generated) primary R-module has prime radical, and this holds precisely when every (finitely generated) R-module satisfies the radical formula for primary submodules.



2009 ◽  
Vol 19 (03) ◽  
pp. 373-382 ◽  
Author(s):  
YVES CORNULIER

The space of marked commutative rings on n given generators is a compact metrizable space. We compute the Cantor–Bendixson rank of any member of this space. For instance, the Cantor–Bendixson rank of the free commutative ring on n generators is ωn, where ω is the smallest infinite ordinal. More generally, we work in the space of finitely generated modules over a given commutative ring.



1986 ◽  
Vol 104 ◽  
pp. 85-115 ◽  
Author(s):  
Dorin Popescu

Let A be a noetherian ring (all the rings are supposed here to be commutative with identity), a ⊂ A a proper ideal and  the completion of A in the α-adic topology. We consider the following conditions(WAP) Every finite system of polynomial equations over A has a solution in A iff it has one in Â.



Sign in / Sign up

Export Citation Format

Share Document