Dimension theory and homogeneity for elementary extensions of a model

1982 ◽  
Vol 47 (1) ◽  
pp. 147-160 ◽  
Author(s):  
Anand Pillay

We take a fixed countable model M0, and we look at the structure of and number of its countable elementary extensions (up to isomorphism over M0). Assuming that S(M0) is countable, we prove that if N is a weakly minimal extension of , and if then there is an elementary embedding of N into M over M0), then N is homogeneous over M0. Moreover the condition that ∣S(M0)∣ = ℵ0 cannot be removed. Under the hypothesis that M0 contains no infinite set of tuples ordered by a formula, we prove that M0 has infinitely many countable elementary extensions up to isomorphism over M0. A preliminary result is that all types over M0 are definable, and moreover is definable over M0 if and only if is definable over M0 (forking symmetry). We also introduce a notion of relative homogeneity, and show that a large class of elementary extensions of M0 are relatively homogeneous over M0 (under the assumptions that M0 has no order and S(M0) is countable).I will now discuss the background to and motivation behind the results in this paper, and also the place of this paper relative to other conjectures and investigations. To simplify notation let T denote the complete diagram of M0. First, our result that if M0 has no order then T has infinitely many countable models is related to the following conjecture: any theory with a finite number (more than one) of countable models is unstable.


2019 ◽  
Vol 84 (3) ◽  
pp. 1007-1019
Author(s):  
DANUL K. GUNATILLEKA

AbstractWe continue the study of the theories of Baldwin–Shi hypergraphs from [5]. Restricting our attention to when the rank δ is rational valued, we show that each countable model of the theory of a given Baldwin–Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of the original class used in the construction. We introduce a notion of dimension for a model and show that there is a an elementary chain $\left\{ {\mathfrak{M}_\beta :\beta \leqslant \omega } \right\}$ of countable models of the theory of a fixed Baldwin–Shi hypergraph with $\mathfrak{M}_\beta \preccurlyeq \mathfrak{M}_\gamma $ if and only if the dimension of $\mathfrak{M}_\beta $ is at most the dimension of $\mathfrak{M}_\gamma $ and that each countable model is isomorphic to some $\mathfrak{M}_\beta $. We also study the regular types that appear in these theories and show that the dimension of a model is determined by a particular regular type. Further, drawing on a large body of work, we use these structures to give an example of a pseudofinite, ω-stable theory with a nonlocally modular regular type, answering a question of Pillay in [11].



1961 ◽  
Vol 4 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Joachim Lambek

This is an expository note to show how an “infinite abacus” (to be defined presently) can be programmed to compute any computable (recursive) function. Our method is probably not new, at any rate, it was suggested by the ingenious technique of Melzak [2] and may be regarded as a modification of the latter.By an infinite abacus we shall understand a countably infinite set of locations (holes, wires etc.) together with an unlimited supply of counters (pebbles, beads etc.). The locations are distinguishable, the counters are not. The confirmed finitist need not worry about these two infinitudes: To compute any given computable function only a finite number of locations will be used, and this number does not depend on the argument (or arguments) of the function.



1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.



2019 ◽  
Vol 84 (02) ◽  
pp. 589-620
Author(s):  
KAMERYN J. WILLIAMS

AbstractIn this article I investigate the phenomenon of minimum and minimal models of second-order set theories, focusing on Kelley–Morse set theory KM, Gödel–Bernays set theory GB, and GB augmented with the principle of Elementary Transfinite Recursion. The main results are the following. (1) A countable model of ZFC has a minimum GBC-realization if and only if it admits a parametrically definable global well order. (2) Countable models of GBC admit minimal extensions with the same sets. (3) There is no minimum transitive model of KM. (4) There is a minimum β-model of GB+ETR. The main question left unanswered by this article is whether there is a minimum transitive model of GB+ETR.



2001 ◽  
Vol 66 (4) ◽  
pp. 1884-1898
Author(s):  
Steven Buechler ◽  
Colleen Hoover

Abstract.Certain basic concepts of geometrical stability theory are generalized to a class of closure operators containing algebraic closure. A specific case of a generalized closure operator is developed which is relevant to Vaught's conjecture. As an application of the methods, we proveTheorem A. Let G be a superstate group of U-rank ω such that the generics of G are locally modular and Th(G) has few countable models. Let G− be the group of nongeneric elements of G. G+ = Go + G−. Let Π = {q ∈ S(∅): U(q) < ω}. For any countable model M of Th(G) there is a finite A ⊂ M such thai M is almost atomic over A ∪ (G+ ∩ M) ∪ ⋃p∈Πp(M).



1983 ◽  
Vol 48 (3) ◽  
pp. 539-541 ◽  
Author(s):  
Libo Lo

The number of homogeneous models has been studied in [1] and other papers. But the number of countable homogeneous models of a countable theory T is not determined when dropping the GCH. Morley in [2] proves that if a countable theory T has more than ℵ1 nonisomorphic countable models, then it has such models. He conjectures that if a countable theory T has more than ℵ0 nonisomorphic countable models, then it has such models. In this paper we show that if a countable theory T has more than ℵ0 nonisomorphic countable homogeneous models, then it has such models.We adopt the conventions in [1]–[3]. Throughout the paper T is a theory and the language of T is denoted by L which is countable.Lemma 1. If a theory T has more than ℵ0types, then T hasnonisomorphic countable homogeneous models.Proof. Suppose that T has more than ℵ0 types. From [2, Corollary 2.4] T has types. Let σ be a Ttype with n variables, and T′ = T ⋃ {σ(c1, …, cn)}, where c1, …, cn are new constants. T′ is consistent and has a countable model (, a1, …, an). From [3, Theorem 3.2.8] the reduced model has a countable homogeneous elementary extension . σ is realized in . This shows that every type σ is realized in at least one countable homogeneous model of T. But each countable model can realize at most ℵ0 types. Hence T has at least countable homogeneous models. On the other hand, a countable theory can have at most nonisomorphic countable models. Hence the number of nonisomorphic countable homogeneous models of T is .In the following, we shall use the languages Lα (α = 0, 1, 2) defined in [2]. We give a brief description of them. For a countable theory T, let K be the class of all models of T. L = L0 is countable.



1990 ◽  
Vol 10 (3) ◽  
pp. 531-554 ◽  
Author(s):  
Marco Martens ◽  
Sebastian Van Strien ◽  
Welington De Melo ◽  
Pedro Mendes

AbstractThe purpose of this research is to describe all smooth vector fields on the torus T2 with a finite number of singularities, no periodic orbits and no saddleconnections. In this paper we are able to complete the description within the class of vector fields which are area contracting near all singularities. In particular we give a large class of analytic vector fields on the torus T2 which have non-trivial recurrence and also sinks.



1985 ◽  
Vol 50 (3) ◽  
pp. 806-808 ◽  
Author(s):  
Akito Tsuboi

In this paper we shall state some interesting facts concerning non-ω-categorical theories which have only finitely many countable models. Although many examples of such theories are known, almost all of them are essentially the same in the following sense: they are obtained from ω-categorical theories, called base theories below, by adding axioms for infinitely many constant symbols. Moreover all known base theories have the (strict) order property in the sense of [6], and so they are unstable. For example, Ehrenfeucht's well-known example which has three countable models has the theory of dense linear order as its base theory.Many papers including [4] and [5] are motivated by the conjecture that every non-ω-categorical theory with a finite number of countable models has the (strict) order property, but this conjecture still remains open. (Of course there are partial positive solutions. For example, in [4], Pillay showed that if such a theory has few links (see [1]), then it has the strict order property.) In this paper we prove the instability of the base theory T0 of such a theory T rather that T itself. Our main theorem is a strengthening of the following which is also our result: if a theory T0 is stable and ω-categorical, then T0 cannot be extended to a theory T which has n countable models (1 < n < ω) by adding axioms for constant symbols.



1976 ◽  
Vol 41 (1) ◽  
pp. 139-145 ◽  
Author(s):  
John E. Hutchinson

AbstractWe prove the following extension of a result of Keisler and Morley. Suppose is a countable model of ZFC and c is an uncountable regular cardinal in . Then there exists an elementary extension of which fixes all ordinals below c, enlarges c, and either (i) contains or (ii) does not contain a least new ordinal.Related results are discussed.



1990 ◽  
Vol 55 (2) ◽  
pp. 656-669 ◽  
Author(s):  
M. W. Bunder

A computer handles λ-terms more easily if these are translated into combinatory terms. This translation process is called bracket abstraction. The simplest abstraction algorithm—the (fab) algorithm of Curry (see Curry and Feys [6])—is lengthy to implement and produces combinatory terms that increase rapidly in length as the number of variables to be abstracted increases.There are several ways in which these problems can be alleviated:(1) A change in order of the clauses in the algorithm so that (f) is performed as a last resort.(2) The use of an extra clause (c), appropriate to βη reduction.(3) The introduction of a finite number of extra combinators.The original 1924 form of bracket abstraction of Schönfinkel [17], which in fact predates λ-calculus, uses all three of these techniques; all are also mentioned in Curry and Feys [6].A technique employed by many computing scientists (Turner [20], Peyton Jones [16], Oberhauser [15]) is to use the (fab) algorithm followed by certain “optimizations” or simplifications involving extra combinators and sometimes special cases of (c).Another is either to allow a fixed infinite set of (super-) combinators (Abdali [1], Kennaway and Sleep [10], Krishnamurthy [12], Tonino [19]) or to allow new combinators to be defined one by one during the abstraction process (Hughes [7] and [8]).A final method encodes the variables to be abstracted as an n-tuple—this requires only a finite number of combinators (Curien [5], Statman [18]).



Sign in / Sign up

Export Citation Format

Share Document