The classification of small types of rank ω, Part I

2001 ◽  
Vol 66 (4) ◽  
pp. 1884-1898
Author(s):  
Steven Buechler ◽  
Colleen Hoover

Abstract.Certain basic concepts of geometrical stability theory are generalized to a class of closure operators containing algebraic closure. A specific case of a generalized closure operator is developed which is relevant to Vaught's conjecture. As an application of the methods, we proveTheorem A. Let G be a superstate group of U-rank ω such that the generics of G are locally modular and Th(G) has few countable models. Let G− be the group of nongeneric elements of G. G+ = Go + G−. Let Π = {q ∈ S(∅): U(q) < ω}. For any countable model M of Th(G) there is a finite A ⊂ M such thai M is almost atomic over A ∪ (G+ ∩ M) ∪ ⋃p∈Πp(M).

2021 ◽  
Vol 179 (1) ◽  
pp. 59-74
Author(s):  
Josef Šlapal

In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line ℤ. Of these relations, we focus on a ternary one equipping the digital plane ℤ2 and the digital space ℤ3 with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedness provided by the closure operator is shown to be suitable for defining digital curves satisfying a digital Jordan curve theorem and digital surfaces satisfying a digital Jordan surface theorem.


2010 ◽  
Author(s):  
A. Guran ◽  
L. Lebedev ◽  
Michail D. Todorov ◽  
Christo I. Christov

1962 ◽  
Vol 14 ◽  
pp. 451-460 ◽  
Author(s):  
David Sachs

It is well known (1, p. 162) that the lattice of subalgebras of a finite Boolean algebra is dually isomorphic to a finite partition lattice. In this paper we study the lattice of subalgebras of an arbitrary Boolean algebra. One of our main results is that the lattice of subalgebras characterizes the Boolean algebra. In order to prove this result we introduce some notions which enable us to give a characterization and representation of the lattices of subalgebras of a Boolean algebra in terms of a closure operator on the lattice of partitions of the Boolean space associated with the Boolean algebra. Our theory then has some analogy to that of the lattice theory of topological vector spaces. Of some interest is the problem of classification of Boolean algebras in terms of the properties of their lattice of subalgebras, and we obtain some results in this direction.


2019 ◽  
Vol 84 (3) ◽  
pp. 1007-1019
Author(s):  
DANUL K. GUNATILLEKA

AbstractWe continue the study of the theories of Baldwin–Shi hypergraphs from [5]. Restricting our attention to when the rank δ is rational valued, we show that each countable model of the theory of a given Baldwin–Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of the original class used in the construction. We introduce a notion of dimension for a model and show that there is a an elementary chain $\left\{ {\mathfrak{M}_\beta :\beta \leqslant \omega } \right\}$ of countable models of the theory of a fixed Baldwin–Shi hypergraph with $\mathfrak{M}_\beta \preccurlyeq \mathfrak{M}_\gamma $ if and only if the dimension of $\mathfrak{M}_\beta $ is at most the dimension of $\mathfrak{M}_\gamma $ and that each countable model is isomorphic to some $\mathfrak{M}_\beta $. We also study the regular types that appear in these theories and show that the dimension of a model is determined by a particular regular type. Further, drawing on a large body of work, we use these structures to give an example of a pseudofinite, ω-stable theory with a nonlocally modular regular type, answering a question of Pillay in [11].


2018 ◽  
Vol 18 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Will Johnson

We construct a nontrivial definable type V field topology on any dp-minimal field [Formula: see text] that is not strongly minimal, and prove that definable subsets of [Formula: see text] have small boundary. Using this topology and its properties, we show that in any dp-minimal field [Formula: see text], dp-rank of definable sets varies definably in families, dp-rank of complete types is characterized in terms of algebraic closure, and [Formula: see text] is finite for all [Formula: see text]. Additionally, by combining the existence of the topology with results of Jahnke, Simon and Walsberg [Dp-minimal valued fields, J. Symbolic Logic 82(1) (2017) 151–165], it follows that dp-minimal fields that are neither algebraically closed nor real closed admit nontrivial definable Henselian valuations. These results are a key stepping stone toward the classification of dp-minimal fields in [Fun with fields, Ph.D. thesis, University of California, Berkeley (2016)].


Semiotica ◽  
2019 ◽  
Vol 2019 (228) ◽  
pp. 173-192 ◽  
Author(s):  
Robert Marty

AbstractThe formal analysis of the principles leading the classification of the hexadic, decadic, and triadic signs from C. S. Peirce especially, gives rise to a general methodology allowing to systematically classify any n-adic combinatory named “protosign.” Basic concepts of the algebraic theory regarding the categories and functors will be used. That formalization provides an additional benefit by highlighting and systematizing formal immanent relationships between the classes of protosigns (or signs). Well known hierarchical structures (lattices) are then obtained. Thanks to the contribution of specific concepts in the Homological Algebra, new methodologies of analysis and creation of significations can be introduced.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


2020 ◽  
Author(s):  
Galina Zhukova

The textbook presents the theory of ordinary differential equations constituting the subject of the discipline "Differential equations". Studied topics: differential equations of first, second, arbitrary order; differential equations; integration of initial and boundary value problems; stability theory of solutions of differential equations and systems. Introduced the basic concepts, proven properties of differential equations and systems. The article presents methods of analysis and solutions. We consider the applications of the obtained results, which are illustrated on a large number of specific tasks. For independent quality control mastering the course material suggested test questions on the theory, exercises and tasks. It is recommended that teachers, postgraduates and students of higher educational institutions, studying differential equations and their applications.


Sign in / Sign up

Export Citation Format

Share Document