Elementary extensions of countable models of set theory

1976 ◽  
Vol 41 (1) ◽  
pp. 139-145 ◽  
Author(s):  
John E. Hutchinson

AbstractWe prove the following extension of a result of Keisler and Morley. Suppose is a countable model of ZFC and c is an uncountable regular cardinal in . Then there exists an elementary extension of which fixes all ordinals below c, enlarges c, and either (i) contains or (ii) does not contain a least new ordinal.Related results are discussed.

2013 ◽  
Vol 13 (02) ◽  
pp. 1350006 ◽  
Author(s):  
JOEL DAVID HAMKINS

The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N or conversely. Indeed, these models are pre-well-ordered by embeddability in order-type exactly ω1 + 1. Specifically, the countable well-founded models are ordered under embeddability exactly in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory M is universal for all countable well-founded binary relations of rank at most Ord M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the proof method shows that if M is any nonstandard model of PA, then every countable model of set theory — in particular, every model of ZFC plus large cardinals — is isomorphic to a submodel of the hereditarily finite sets 〈 HF M, ∈M〉 of M. Indeed, 〈 HF M, ∈M〉 is universal for all countable acyclic binary relations.


1998 ◽  
Vol 63 (3) ◽  
pp. 1116-1136 ◽  
Author(s):  
Andrés Villaveces

AbstractLarge cardinals arising from the existence of arbitrarily long end elementary extension chains over models of set theory are studied here. In particular, we show that the large cardinals obtained in this fashion (‘unfoldable cardinals’) lie in the boundary of the propositions consistent with ‘V = L’ and the existence of 0#. We also provide an ‘embedding characterisation’ of the unfoldable cardinals and study their preservation and destruction by various forcing constructions.


2003 ◽  
Vol 55 (4) ◽  
pp. 750-765
Author(s):  
Rüdiger Göbel ◽  
Saharon Shelah ◽  
Lutz Strüngmann

AbstractAn E-ring is a unital ring R such that every endomorphism of the underlying abelian group R+ is multiplication by some ring element. The existence of almost-free E-rings of cardinality greater than 2ℵ0 is undecidable in ZFC. While they exist in Gödel's universe, they do not exist in other models of set theory. For a regular cardinal ℵ1 ≤ λ 2ℵ0 we construct E-rings of cardinality λ in ZFC which have ℵ1-free additive structure. For λ = ℵ1 we therefore obtain the existence of almost-free E-rings of cardinality ℵ1 in ZFC.


1983 ◽  
Vol 48 (4) ◽  
pp. 1053-1073 ◽  
Author(s):  
Matt Kaufmann

AbstractLet be a well-founded model of ZFC whose class of ordinals has uncountable cofinality, such that has a Σn end extension for each n ∈ ω. It is shown in Theorem 1.1 that there is such a model which has no elementary end extension. In the process some interesting facts about topless end extensions (those with no least new ordinal) are uncovered, for example Theorem 2.1: If is a well-founded model of ZFC, such that has uncountable cofinality and has a topless Σ3 end extension, then has a topless elementary end extension and also a well-founded elementary end extension, and contains ordinals which are (in ) highly hyperinaccessible. In §3 related results are proved for κ-like models (κ any regular cardinal) which need not be well founded. As an application a soft proof is given of a theorem of Schmerl on the model-theoretic relation κ → λ. (The author has been informed that Silver had earlier, independently, found a similar unpublished proof of that theorem.) Also, a simpler proof is given of (a generalization of) a characterization by Keisler and Silver of the class of well-founded models which have a Σn end extension for each n ∈ ω. The case κ = ω1 is investigated more deeply in §4, where the problem solved by Theorem 1.1 is considered for non-well-founded models. In Theorems 4.1 and 4.4, ω1-like models of ZFC are constructed which have a Σn end extension for all n ∈ ω but have no elementary end extension. ω1-like models of ZFC which have no Σ3 end extension are produced in Theorem 4.2. The proof uses a notion of satisfaction class, which is also applied in the proof of Theorem 4.6: No model of ZFC has a definable end extension which satisfies ZFC. Finally, Theorem 5.1 generalizes results of Keisler and Morley, and Hutchinson, by asserting that every model of ZFC of countable cofinality has a topless elementary end extension. This contrasts with the rest of the paper, which shows that for well-founded models of uncountable cofinality and for κ-like models with κ regular, topless end extensions are much rarer than blunt end extensions.


1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.


Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .


2019 ◽  
Vol 84 (02) ◽  
pp. 589-620
Author(s):  
KAMERYN J. WILLIAMS

AbstractIn this article I investigate the phenomenon of minimum and minimal models of second-order set theories, focusing on Kelley–Morse set theory KM, Gödel–Bernays set theory GB, and GB augmented with the principle of Elementary Transfinite Recursion. The main results are the following. (1) A countable model of ZFC has a minimum GBC-realization if and only if it admits a parametrically definable global well order. (2) Countable models of GBC admit minimal extensions with the same sets. (3) There is no minimum transitive model of KM. (4) There is a minimum β-model of GB+ETR. The main question left unanswered by this article is whether there is a minimum transitive model of GB+ETR.


1983 ◽  
Vol 48 (3) ◽  
pp. 539-541 ◽  
Author(s):  
Libo Lo

The number of homogeneous models has been studied in [1] and other papers. But the number of countable homogeneous models of a countable theory T is not determined when dropping the GCH. Morley in [2] proves that if a countable theory T has more than ℵ1 nonisomorphic countable models, then it has such models. He conjectures that if a countable theory T has more than ℵ0 nonisomorphic countable models, then it has such models. In this paper we show that if a countable theory T has more than ℵ0 nonisomorphic countable homogeneous models, then it has such models.We adopt the conventions in [1]–[3]. Throughout the paper T is a theory and the language of T is denoted by L which is countable.Lemma 1. If a theory T has more than ℵ0types, then T hasnonisomorphic countable homogeneous models.Proof. Suppose that T has more than ℵ0 types. From [2, Corollary 2.4] T has types. Let σ be a Ttype with n variables, and T′ = T ⋃ {σ(c1, …, cn)}, where c1, …, cn are new constants. T′ is consistent and has a countable model (, a1, …, an). From [3, Theorem 3.2.8] the reduced model has a countable homogeneous elementary extension . σ is realized in . This shows that every type σ is realized in at least one countable homogeneous model of T. But each countable model can realize at most ℵ0 types. Hence T has at least countable homogeneous models. On the other hand, a countable theory can have at most nonisomorphic countable models. Hence the number of nonisomorphic countable homogeneous models of T is .In the following, we shall use the languages Lα (α = 0, 1, 2) defined in [2]. We give a brief description of them. For a countable theory T, let K be the class of all models of T. L = L0 is countable.


1958 ◽  
Vol 23 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Michael O. Rabin

In this note we shall prove a certain relative recursiveness lemma concerning countable models of set theory (Lemma 5). From this lemma will follow two results about special types of such models.Kreisel [5] and Mostowski [6] have shown that certain (finitely axiomatized) systems of set theory, formulated by means of the ϵ relation and certain additional non-logical constants, do not possess recursive models. Their purpose in doing this was to construct consistent sentences without recursive models. As a first corollary of Lemma 5, we obtain a very simple proof, not involving any formal constructions within the system of the notions of truth and satisfiability, of an extension of the Kreisel-Mostowski theorems. Namely, set theory with the single non-logical constant ϵ does not possess any recursively enumerable model. Thus we get, as a side product, an easy example of a consistent sentence containing a single binary relation which does not possess any recursively enumerable model; this sentence being the conjunction of the (finitely many) axioms of set theory.


1985 ◽  
Vol 50 (2) ◽  
pp. 476-486
Author(s):  
Ali Enayat

The central notion of this paper is that of a κ-elementary end extension of a model of set theory. A model is said to be a κ-elementary end extension of a model of set theory if > and κ, which is a cardinal of , is end extended in the passage from to , i.e., enlarges κ without enlarging any of its members (see §0 for more detail). This notion was implicitly introduced by Scott in [Sco] and further studied by Keisler and Morley in [KM], Hutchinson in [H] and recently by the author in [E]. It is not hard to see that if has a κ-elementary end extension then κ must be regular in . Keisler and Morley [KM] noticed that this has a converse if is countable, i.e., if κ is a regular cardinal of a countable model then has a κ-elementary end extension. Later Hutchinson [H] refined this result by constructing κ-elementary end extensions 1 and 2 of an arbitrary countable model in which κ is a regular uncountable cardinal, such that 1 adds a least new element to κ while 2 adds no least new ordinal to κ. It is a folklore fact of model theory that the Keisler-Morley result gives soft and short proofs of countable compactness and abstract completeness (i.e. recursive enumera-bility of validities) of the logic L(Q), studied extensively in Keisler's [K2]; and Hutchinson's refinement does the same for stationary logic L(aa), studied by Barwise et al. in [BKM]. The proof of Keisler-Morley and that of Hutchinson make essential use of the countability of since they both rely on the Henkin-Orey omitting types theorem. As pointed out in [E, Theorem 2.12], one can prove these theorems using “generic” ultrapowers just utilizing the assumption of countability of the -power set of κ. The following result, appearing as Theorem 2.14 in [E], links the notion of κ-elementary end extension to that of measurability of κ. The proof using (b) is due to Matti Rubin.


Sign in / Sign up

Export Citation Format

Share Document