The relative expressive power of some logics extending first-order logic

1979 ◽  
Vol 44 (2) ◽  
pp. 129-146 ◽  
Author(s):  
John Cowles

In recent years there has been a proliferation of logics which extend first-order logic, e.g., logics with infinite sentences, logics with cardinal quantifiers such as “there exist infinitely many…” and “there exist uncountably many…”, and a weak second-order logic with variables and quantifiers for finite sets of individuals. It is well known that first-order logic has a limited ability to express many of the concepts studied by mathematicians, e.g., the concept of a wellordering. However, first-order logic, being among the simplest logics with applications to mathematics, does have an extensively developed and well understood model theory. On the other hand, full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory. Indeed, the search for a logic with a semantics complex enough to say something, yet at the same time simple enough to say something about, accounts for the proliferation of logics mentioned above. In this paper, a number of proposed strengthenings of first-order logic are examined with respect to their relative expressive power, i.e., given two logics, what concepts can be expressed in one but not the other?For the most part, the notation is standard. Most of the notation is either explained in the text or can be found in the book [2] of Chang and Keisler. Some notational conventions used throughout the text are listed below: the empty set is denoted by ∅.

1999 ◽  
Vol Vol. 3 no. 3 ◽  
Author(s):  
Thomas Schwentick ◽  
Klaus Barthelmann

International audience Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata models are defined that have, on arbitrary classes of relational structures, exactly the expressive power of first-order logic and existential monadic second-order logic, respectively.


2014 ◽  
Vol 20 (1) ◽  
pp. 39-79 ◽  
Author(s):  
JOHN T. BALDWIN

AbstractWe propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends this virtue to other complete theories. The interaction of model theory and traditional mathematics is examined by considering the views of such as Bourbaki, Hrushovski, Kazhdan, and Shelah to flesh out the argument that the main impact of formal methods on mathematics is using formal definability to obtain results in ‘mainstream’ mathematics. Moreover, these methods (e.g., the stability hierarchy) provide an organization for much mathematics which gives specific content to dreams of Bourbaki about the architecture of mathematics.


Author(s):  
Shawn Hedman

We consider various extensions of first-order logic. Informally, a logic 𝓛 is an extension of first-order logic if every sentence of first-order logic is also a sentence of 𝓛. We also require that 𝓛 is closed under conjunction and negation and has other basic properties of a logic. In Section 9.4, we list the properties that formally define the notion of an extension of first-order logic. Prior to Section 9.4, we provide various natural examples of such extensions. In Sections 9.1–9.3, we consider, respectively, second-order logic, infinitary logics, and logics with fixed-point operators. We do not provide a thorough treatment of any one of these logics. Indeed, we could easily devote an entire chapter to each. Rather, we define each logic and provide examples that demonstrate the expressive power of the logics. In particular, we show that none of these logics has compactness. In the final Section 9.4, we prove that if a proper extension of first-order logic has compactness, then the Downward Löwenhiem–Skolem theorem must fail for that logic. This is Lindstrom’s theorem. The Compactness theorem and Downward Löwenheim–Skolem theorem are two crucial results for model theory. Every property of first-order logic from Chapter 4 is a consequence of these two theorems. Lindström’s theorem implies that the only extension of first-order logic possessing these properties is first-order logic itself. Second-order logic is the extension of first-order logic that allows quantification of relations. The symbols of second-order logic are the same symbols used in first-order logic. The syntax of second-order logic is defined by adding one rule to the syntax of first-order logic. The additional rule makes second-order logic far more expressive than first-order logic. Specifically, the syntax of second-order logic is defined as follows. Any atomic first-order formula is a formula of second-order logic. Moreover, we have the following four rules: (R1) If φ is a formula then so is ¬φ. (R2) If φ and ψ are formulas then so is φ ∧ ψ. (R3) If φ is a formula, then so is ∃x φ for any variable x.


Author(s):  
Stewart Shapiro

Typically, a formal language has variables that range over a collection of objects, or domain of discourse. A language is ‘second-order’ if it has, in addition, variables that range over sets, functions, properties or relations on the domain of discourse. A language is third-order if it has variables ranging over sets of sets, or functions on relations, and so on. A language is higher-order if it is at least second-order. Second-order languages enjoy a greater expressive power than first-order languages. For example, a set S of sentences is said to be categorical if any two models satisfying S are isomorphic, that is, have the same structure. There are second-order, categorical characterizations of important mathematical structures, including the natural numbers, the real numbers and Euclidean space. It is a consequence of the Löwenheim–Skolem theorems that there is no first-order categorical characterization of any infinite structure. There are also a number of central mathematical notions, such as finitude, countability, minimal closure and well-foundedness, which can be characterized with formulas of second-order languages, but cannot be characterized in first-order languages. Some philosophers argue that second-order logic is not logic. Properties and relations are too obscure for rigorous foundational study, while sets and functions are in the purview of mathematics, not logic; logic should not have an ontology of its own. Other writers disqualify second-order logic because its consequence relation is not effective – there is no recursively enumerable, sound and complete deductive system for second-order logic. The deeper issues underlying the dispute concern the goals and purposes of logical theory. If a logic is to be a calculus, an effective canon of inference, then second-order logic is beyond the pale. If, on the other hand, one aims to codify a standard to which correct reasoning must adhere, and to characterize the descriptive and communicative abilities of informal mathematical practice, then perhaps there is room for second-order logic.


2004 ◽  
Vol 69 (1) ◽  
pp. 118-136 ◽  
Author(s):  
H. Jerome Keisler ◽  
Wafik Boulos Lotfallah

AbstractThis paper studies the expressive power that an extra first order quantifier adds to a fragment of monadic second order logic, extending the toolkit of Janin and Marcinkowski [JM01].We introduce an operation existsn (S) on properties S that says “there are n components having S”. We use this operation to show that under natural strictness conditions, adding a first order quantifier word u to the beginning of a prefix class V increases the expressive power monotonically in u. As a corollary, if the first order quantifiers are not already absorbed in V, then both the quantifier alternation hierarchy and the existential quantifier hierarchy in the positive first order closure of V are strict.We generalize and simplify methods from Marcinkowski [Mar99] to uncover limitations of the expressive power of an additional first order quantifier, and show that for a wide class of properties S, S cannot belong to the positive first order closure of a monadic prefix class W unless it already belongs to W.We introduce another operation alt(S) on properties which has the same relationship with the Circuit Value Problem as reach(S) (defined in [JM01]) has with the Directed Reachability Problem. We use alt(S) to show that Πn ⊈ FO(Σn), Σn ⊈ FO(∆n). and ∆n+1 ⊈ FOB(Σn), solving some open problems raised in [Mat98].


2010 ◽  
Vol 16 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Peter Koellner

AbstractIn this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin's Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine's claim that second-order logic is really set theory in sheep's clothing.


2012 ◽  
Vol 7 ◽  
Author(s):  
Anders Søgaard ◽  
Søren Lind Kristiansen

Existing logic-based querying tools for dependency treebanks use first order logic or monadic second order logic. We introduce a very fast model checker based on hybrid logic with operators ↓, @ and A and show that it is much faster than an existing querying tool for dependency treebanks based on first order logic, and much faster than an existing general purpose hybrid logic model checker. The querying tool is made publicly available.


Author(s):  
Neil Barton ◽  
Moritz Müller ◽  
Mihai Prunescu

AbstractOften philosophers, logicians, and mathematicians employ a notion of intended structure when talking about a branch of mathematics. In addition, we know that there are foundational mathematical theories that can find representatives for the objects of informal mathematics. In this paper, we examine how faithfully foundational theories can represent intended structures, and show that this question is closely linked to the decidability of the theory of the intended structure. We argue that this sheds light on the trade-off between expressive power and meta-theoretic properties when comparing first-order and second-order logic.


Author(s):  
Timothy Smiley

The predicate calculus is the dominant system of modern logic, having displaced the traditional Aristotelian syllogistic logic that had been the previous paradigm. Like Aristotle’s, it is a logic of quantifiers – words like ‘every’, ‘some’ and ‘no’ that are used to express that a predicate applies universally or with some other distinctive kind of generality, for example ‘everyone is mortal’, ‘someone is mortal’, ‘no one is mortal’. The weakness of syllogistic logic was its inability to represent the structure of complex predicates. Thus it could not cope with argument patterns like ‘everything Fs and Gs, so everything Fs’. Nor could it cope with relations, because a logic of relations must be able to analyse cases where a quantifier is applied to a predicate that already contains one, as in ‘someone loves everyone’. Remedying the weakness required two major innovations. One was a logic of connectives – words like ‘and’, ‘or’ and ‘if’ that form complex sentences out of simpler ones. It is often studied as a distinct system: the propositional calculus. A proposition here is a true-or-false sentence and the guiding principle of propositional calculus is truth-functionality, meaning that the truth-value (truth or falsity) of a compound proposition is uniquely determined by the truth-values of its components. Its principal connectives are negation, conjunction, disjunction and a ‘material’ (that is, truth-functional) conditional. Truth-functionality makes it possible to compute the truth-values of propositions of arbitrary complexity in terms of their basic propositional constituents, and so develop the logic of tautology and tautological consequence (logical truth and consequence in virtue of the connectives). The other invention was the quantifier-variable notation. Variables are letters used to indicate things in an unspecific way; thus ‘x is mortal’ is read as predicating of an unspecified thing x what ‘Socrates is mortal’ predicates of Socrates. The connectives can now be used to form complex predicates as well as propositions, for example ‘x is human and x is mortal’; while different variables can be used in different places to express relational predicates, for example ‘x loves y’. The quantifier goes in front of the predicate it governs, with the relevant variable repeated beside it to indicate which positions are being generalized. These radical departures from the idiom of quantification in natural languages are needed to solve the further problem of ambiguity of scope. Compare, for example, the ambiguity of ‘someone loves everyone’ with the unambiguous alternative renderings ‘there is an x such that for every y, x loves y’ and ‘for every y, there is an x such that x loves y’. The result is a pattern of formal language based on a non-logical vocabulary of names of things and primitive predicates expressing properties and relations of things. The logical constants are the truth-functional connectives and the universal and existential quantifiers, plus a stock of variables construed as ranging over things. This is ‘the’ predicate calculus. A common option is to add the identity sign as a further logical constant, producing the predicate calculus with identity. The first modern logic of quantification, Frege’s of 1879, was designed to express generalizations not only about individual things but also about properties of individuals. It would nowadays be classified as a second-order logic, to distinguish it from the first-order logic described above. Second-order logic is much richer in expressive power than first-order logic, but at a price: first-order logic can be axiomatized, second-order logic cannot.


Author(s):  
Shawn Hedman

First-order logic is a richer language than propositional logic. Its lexicon contains not only the symbols ∧, ∨, ¬, →, and ↔ (and parentheses) from propositional logic, but also the symbols ∃ and ∀ for “there exists” and “for all,” along with various symbols to represent variables, constants, functions, and relations. These symbols are grouped into five categories. • Variables. Lower case letters from the end of the alphabet (. . . x, y, z) are used to denote variables. Variables represent arbitrary elements of an underlying set. This, in fact, is what “first-order” refers to. Variables that represent sets of elements are called second-order. Second-order logic, discussed in Chapter 9, is distinguished by the inclusion of such variables. • Constants. Lower case letters from the beginning of the alphabet (a, b, c, . . .) are usually used to denote constants. A constant represents a specific element of an underlying set. • Functions. The lower case letters f, g, and h are commonly used to denote functions. The arguments may be parenthetically listed following the function symbol as f(x1, x2, . . . , xn). First-order logic has symbols for functions of any number of variables. If f is a function of one, two, or three variables, then it is called unary, binary, or ternary, respectively. In general, a function of n variables is called n-ary and n is referred to as the arity of the function. • Relations. Capital letters, especially P, Q, R, and S, are used to denote relations. As with functions, each relation has an associated arity. We have an infinite number of each of these four types of symbols at our disposal. Since there are only finitely many letters, subscripts are used to accomplish this infinitude. For example, x1, x2, x3, . . . are often used to denote variables. Of course, we can use any symbol we want in first-order logic. Ascribing the letters of the alphabet in the above manner is a convenient convention. If you turn to a random page in this book and see “R(a, x, y),” you can safely assume that R is a ternary relation, x and y are variables, and a is a constant.


Sign in / Sign up

Export Citation Format

Share Document