On ideals of subsets of the plane and on Cohen reals

1986 ◽  
Vol 51 (3) ◽  
pp. 560-569 ◽  
Author(s):  
Jacek Cichoń ◽  
Janusz Pawlikowski

AbstractLet be any proper ideal of subsets of the real line R which contains all finite subsets of R. We define an ideal * ∣ as follows: X ∈ * ∣ if there exists a Borel set B ⊂ R × R such that X ⊂ B and for any x ∈ R we have {y ∈ R: 〈x, y〉 ∈ B} ∈ . We show that there exists a family ⊂ * ∣ of power ω1 such that ⋃ ∉ * ∣ .In the last section we investigate properties of ideals of Lebesgue measure zero sets and meager sets in Cohen extensions of models of set theory.

1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


2008 ◽  
Vol 51 (2) ◽  
pp. 337-362 ◽  
Author(s):  
Torben Fattler ◽  
Martin Grothaus

AbstractWe give a Dirichlet form approach for the construction and analysis of elliptic diffusions in $\bar{\varOmega}\subset\mathbb{R}^n$ with reflecting boundary condition. The problem is formulated in an $L^2$-setting with respect to a reference measure $\mu$ on $\bar{\varOmega}$ having an integrable, $\mathrm{d} x$-almost everywhere (a.e.) positive density $\varrho$ with respect to the Lebesgue measure. The symmetric Dirichlet forms $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ we consider are the closure of the symmetric bilinear forms\begin{gather*} \mathcal{E}^{\varrho,a}(f,g)=\sum_{i,j=1}^n\int_{\varOmega}\partial_ifa_{ij} \partial_jg\,\mathrm{d}\mu,\quad f,g\in\mathcal{D}, \\ \mathcal{D}=\{f\in C(\bar{\varOmega})\mid f\in W^{1,1}_{\mathrm{loc}}(\varOmega),\ \mathcal{E}^{\varrho,a}(f,f)\lt\infty\}, \end{gather*}in $L^2(\bar{\varOmega},\mu)$, where $a$ is a symmetric, elliptic, $n\times n$-matrix-valued measurable function on $\bar{\varOmega}$. Assuming that $\varOmega$ is an open, relatively compact set with boundary $\partial\varOmega$ of Lebesgue measure zero and that $\varrho$ satisfies the Hamza condition, we can show that $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ is a local, quasi-regular Dirichlet form. Hence, it has an associated self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and diffusion process $\bm{M}^{\varrho,a}$ (i.e. an associated strong Markov process with continuous sample paths). Furthermore, since $1\in D(\mathcal{E}^{\varrho,a})$ (due to the Neumann boundary condition) and $\mathcal{E}^{\varrho,a}(1,1)=0$, we obtain a conservative process $\bm{M}^{\varrho,a}$ (i.e. $\bm{M}^{\varrho,a}$ has infinite lifetime). Additionally, assuming that $\sqrt{\varrho}\in W^{1,2}(\varOmega)\cap C(\bar{\varOmega})$ or that $\varrho$ is bounded, $\varOmega$ is convex and $\{\varrho=0\}$ has codimension at least 2, we can show that the set $\{\varrho=0\}$ has $\mathcal{E}^{\varrho,a}$-capacity zero. Therefore, in this case we can even construct an associated conservative diffusion process in $\{\varrho>0\}$. This is essential for our application to continuous $N$-particle systems with singular interactions. Note that for the construction of the self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and the Markov process $\bm{M}^{\varrho,a}$ we do not need to assume any differentiability condition on $\varrho$ and $a$. We obtain the following explicit representation of the generator for $\sqrt{\varrho}\in W^{1,2}(\varOmega)$ and $a\in W^{1,\infty}(\varOmega)$:$$ L^{\varrho,a}=\sum_{i,j=1}^n\partial_i(a_{ij}\partial_j)+\partial_i(\log\varrho)a_{ij}\partial_j. $$Note that the drift term can be singular, because we allow $\varrho$ to be zero on a set of Lebesgue measure zero. Our assumptions in this paper even allow a drift that is not integrable with respect to the Lebesgue measure.


2016 ◽  
Vol 23 (3) ◽  
pp. 387-391
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector can be of Lebesgue measure zero and of first Baire category. This result gives an answer to a question posed by G. Lazou.


1990 ◽  
Vol 55 (3) ◽  
pp. 1022-1036 ◽  
Author(s):  
Arnold W. Miller

AbstractIn this paper we ask the question: to what extent do basic set theoretic properties of Loeb measure depend on the nonstandard universe and on properties of the model of set theory in which it lies? We show that, assuming Martin's axiom and κ-saturation, the smallest cover by Loeb measure zero sets must have cardinality less than κ. In contrast to this we show that the additivity of Loeb measure cannot be greater than ω1. Define cof(H) as the smallest cardinality of a family of Loeb measure zero sets which cover every other Loeb measure zero set. We show that card(⌊log2(H)⌋) ≤ cof (H) ≤ card(2H), where card is the external cardinality. We answer a question of Paris and Mills concerning cuts in nonstandard models of number theory. We also present a pair of nonstandard universes M ≼ N and hyperfinite integer H ∈ M such that H is not enlarged by N, 2H contains new elements, but every new subset of H has Loeb measure zero. We show that it is consistent that there exists a Sierpiński set in the reals but no Loeb-Sierpiński set in any nonstandard universe. We also show that it is consistent with the failure of the continuum hypothesis that Loeb-Sierpiński sets can exist in some nonstandard universes and even in an ultrapower of a standard universe.


1996 ◽  
Vol 61 (1) ◽  
pp. 246-249 ◽  
Author(s):  
Marion Scheepers

Let denote the ideal of Lebesgue measure zero subsets of the real line. Then add() denotes the minimal cardinality of a subset of whose union is not an element of . In [1] Bartoszynski gave an elegant combinatorial characterization of add(), namely: add() is the least cardinal number κ for which the following assertion fails:For every family of at mostκ functions from ω to ω there is a function F from ω to the finite subsets of ω such that:1. For each m, F(m) has at most m + 1 elements, and2. for each f inthere are only finitely many m such that f(m) is not an element of F(m).The symbol A(κ) will denote the assertion above about κ. In the course of his proof, Bartoszynski also shows that the cardinality restriction in 1 is not sharp. Indeed, let (Rm: m < ω) be any sequence of integers such that for each m Rm, ≤ Rm+1, and such that limm→∞Rm = ∞. Then the truth of the assertion A(κ) is preserved if in 1 we say instead that1′. For each m, F(m) has at most Rm elements.We shall use this observation later on. We now define three more statements, denoted B(κ), C(κ) and D(κ), about cardinal number κ.


1990 ◽  
Vol 55 (2) ◽  
pp. 674-677
Author(s):  
Janusz Pawlikowski

AbstractAny finite support iteration of posets with precalibre ℵ1 which has the length of cofinahty greater than ω1 yields a model for the dual Borel conjecture in which the real line is covered by ℵ1 strong measure zero sets.


Author(s):  
Mareike Wolff

AbstractLet $$g(z)=\int _0^zp(t)\exp (q(t))\,dt+c$$ g ( z ) = ∫ 0 z p ( t ) exp ( q ( t ) ) d t + c where p, q are polynomials and $$c\in {\mathbb {C}}$$ c ∈ C , and let f be the function from Newton’s method for g. We show that under suitable assumptions on the zeros of $$g''$$ g ′ ′ the Julia set of f has Lebesgue measure zero. Together with a theorem by Bergweiler, our result implies that $$f^n(z)$$ f n ( z ) converges to zeros of g almost everywhere in $${\mathbb {C}}$$ C if this is the case for each zero of $$g''$$ g ′ ′ that is not a zero of g or $$g'$$ g ′ . In order to prove our result, we establish general conditions ensuring that Julia sets have Lebesgue measure zero.


Sign in / Sign up

Export Citation Format

Share Document