Zero-one laws with variable probability

1993 ◽  
Vol 58 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Joel Spencer

One of this author's favorite theorems has long been the Zero-One law discovered independently by Glebskii et al. [12] and Ron Fagin [10]. Let A be any first-order property of graphs and let µn(A) be the proportion of labelled graphs on n vertices for which A holds. ThenThis result has inspired much work by logicians, generally in the direction of showing (1) for some powerful languages. Thus it is known [5] that (1) holds when A is a sentence in fixed point logic and it is known [13] that (1) does not always hold when A is a sentence in second-order monadic logic. Here, however, we explore recent work in a totally different direction. Let G(n, p) denote the random graph on n vertices with edge probability p. (In §2 we define the random structures we will deal with.) A property A is an event in the probability space and Pr[G(n, p) ╞ A] is well defined. When p = 1/2, each labelled graph on n vertices has equal weight so that (1) may be rewrittenFagin's proof actually gives that (2) holds for any constant 0 < p < 1.

Author(s):  
Béla Bollobás

In this note we shall study random labelled graphs. Denote bythe set of all graphs with n given labelled vertices and M(n) edges. As usual, we turn (M(n)) into a probability space by giving all graphs the same probability. The question we address ourselves to is the following. Given a graph H and a constant p, 0 < p < 1, for what functions M(n) is it true that the probability PM(n)(H ⊂ G) that a graph G∈ (M(n)) contains H tends to p as n∞→? This question was posed by Erdös and Rényi (3), (4), who also proved several beautiful and surprising theorems. In order to state the main general result of Erdös and Rényi in this direction, and for our use later, we introduce some definitions.


2017 ◽  
Vol 82 (2) ◽  
pp. 648-671 ◽  
Author(s):  
GABRIEL CONANT

AbstractWe use axioms of abstract ternary relations to define the notion of a free amalgamation theory. These form a subclass of first-order theories, without the strict order property, encompassing many prominent examples of countable structures in relational languages, in which the class of algebraically closed substructures is closed under free amalgamation. We show that any free amalgamation theory has elimination of hyperimaginaries and weak elimination of imaginaries. With this result, we use several families of well-known homogeneous structures to give new examples of rosy theories. We then prove that, for free amalgamation theories, simplicity coincides with NTP2 and, assuming modularity, with NSOP3 as well. We also show that any simple free amalgamation theory is 1-based. Finally, we prove a combinatorial characterization of simplicity for Fraïssé limits with free amalgamation, which provides new context for the fact that the generic Kn-free graphs are SOP3, while the higher arity generic $K_n^r$-free r-hypergraphs are simple.


Author(s):  
Uriah Kriegel

Brentano’s theory of judgment serves as a springboard for his conception of reality, indeed for his ontology. It does so, indirectly, by inspiring a very specific metaontology. To a first approximation, ontology is concerned with what exists, metaontology with what it means to say that something exists. So understood, metaontology has been dominated by three views: (i) existence as a substantive first-order property that some things have and some do not, (ii) existence as a formal first-order property that everything has, and (iii) existence as a second-order property of existents’ distinctive properties. Brentano offers a fourth and completely different approach to existence talk, however, one which falls naturally out of his theory of judgment. The purpose of this chapter is to present and motivate Brentano’s approach.


2014 ◽  
Vol 24 (1) ◽  
pp. 195-215
Author(s):  
JEFFREY GAITHER ◽  
GUY LOUCHARD ◽  
STEPHAN WAGNER ◽  
MARK DANIEL WARD

We analyse the first-order asymptotic growth of \[ a_{n}=\int_{0}^{1}\prod_{j=1}^{n}4\sin^{2}(\pi jx)\, dx. \] The integer an appears as the main term in a weighted average of the number of orbits in a particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic and analytic number theory. The combinatorial structure of an is also of interest, as the ‘signed’ number of ways in which 0 can be represented as the sum of ϵjj for −n ≤ j ≤ n (with j ≠ 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


1994 ◽  
Vol 3 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Neal Brand ◽  
Steve Jackson

In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


1983 ◽  
Vol 48 (3) ◽  
pp. 564-569 ◽  
Author(s):  
J.B. Paris ◽  
C. Dimitracopoulos

The results in this paper were motivated by the following result due to R. Solovay.Theorem 1 (Solovay). Let M be a nonstandard model of Peano's first order axioms P and let I ⊂e M (i.e. ϕ ≠ ⊂ M and I is closed under < and successor). Then for each of the functions we can define J ⊆e I in ‹M, I› such that J is closed under that function. (∣x∣ denotes [log2(x)].)Proof. Just notice that the cuts defined byare successively closed under In view of Theorem 1, the following question was raised by R. Solovay: Can we define J ⊆ I in ‹M, I› such that J is closed under exponentiation? In Theorem 2 we show that the answer is “no”. Theorem 3 is based on Theorem 2 and extends the technique to cuts which are models of subsystems of P.To prove both theorems we shall need an estimate due to R. Parikh (see [1], especially the proof of Theorem 2.2a). For the sake of completeness, and also to introduce some notation we shall sketch Parikh's estimate in the next section. At all times we shall give the easiest estimates which still work rather than the sharpest ones.


1963 ◽  
Vol 3 (2) ◽  
pp. 202-206 ◽  
Author(s):  
J. C. Butcher

Huta [1], [2] has given two processes for solving a first order differential equation to sixth order accuracy. His methods are each eight stage Runge-Kutta processes and differ mainly in that the later process has simpler coefficients occurring in it.


Sign in / Sign up

Export Citation Format

Share Document