On countable fractions from an elementary class

1994 ◽  
Vol 59 (4) ◽  
pp. 1410-1413
Author(s):  
C. J. Ash

The following fairly elementary result seems to raise possibilities for the study of countable models of a theory in a countable language. For the terminology of model theory we refer to [CK].Let L be a countable first-order language. Let L′ be the relational language having, for each formula φ of L and each sequence υ1,…,υn of variables including the free variables of φ, an n-ary relation symbol Pφ. For any L-structure and any formula Ψ(υ) of L, we define the Ψ-fraction of to be the L′-structure Ψ whose universe consists of those elements of satisfying Ψ(υ) and whose relations {Rφ}φϵL are defined by letting a1,…,an satisfy Rφ in Ψ if, and only if, a1,…, an satisfy φ in .An L-elementary class means the class of all L-structures satisfying each of some set of sentences of L. The countable part of an L-elementary class K means the class of all countable L-structures from K.Theorem. Let K be an L-elementary class and let Ψ(υ) be a formula of L. Then the class of countable Ψ-fractions of structures in K is the countable part of some L′-elementary class.Comment. By the downward Löwenheim-Skolem theorem, the countable Ψ-fractions of structures in K are the same as the Ψ-fractions of countable structures in K.Proof. We give a set Σ′ of L′-sentences whose countable models are exactly the countable Ψ-fractions of structures in K.

1971 ◽  
Vol 36 (1) ◽  
pp. 129-140 ◽  
Author(s):  
G. Fuhrken ◽  
W. Taylor

A relational structure is called weakly atomic-compact if and only if every set Σ of atomic formulas (taken from the first-order language of the similarity type of augmented by a possibly uncountable set of additional variables as “unknowns”) is satisfiable in whenever every finite subset of Σ is so satisfiable. This notion (as well as some related ones which will be mentioned in §4) was introduced by J. Mycielski as a generalization to model theory of I. Kaplansky's notion of an algebraically compact Abelian group (cf. [5], [7], [1], [8]).


1968 ◽  
Vol 33 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Richmond H. Thomason

In Kripke [8] the first-order intuitionjstic predicate calculus (without identity) is proved semantically complete with respect to a certain model theory, in the sense that every formula of this calculus is shown to be provable if and only if it is valid. Metatheorems of this sort are frequently called weak completeness theorems—the object of the present paper is to extend Kripke's result to obtain a strong completeness theorem for the intuitionistic predicate calculus of first order; i.e., we will show that a formula A of this calculus can be deduced from a set Γ of formulas if and only if Γ implies A. In notes 3 and 5, below, we will indicate how to account for identity, as well. Our proof of the completeness theorem employs techniques adapted from Henkin [6], and makes no use of semantic tableaux; this proof will also yield a Löwenheim-Skolem theorem for the modeling.


1980 ◽  
Vol 45 (1) ◽  
pp. 172-176
Author(s):  
W. Richard Stark

Working in ZFC + Martin's Axiom we develop a generalization of the Barwise Compactness Theorem which holds in languages of cardinality less than . Next, using this compactness theorem, an omitting types theorem for fewer than types is proved. Finally, in ZFC, we prove that this compactness result implies Martin's Axiom (the Equivalence Theorem). Our compactness theorem applies to a new class of theories—ccΣ-theories—which generalize the countable Σ-theories of Barwise's theorem. The Omitting Types Theorem and the Equivalence Theorem serve as examples illustrating the use of ccΣ-theories.Assume = (A, ε) or = (A, ε R1,…,Rm) where is admissible. L() is the first-order language with constants for elements of A and relation symbols for relations in . LA is A ⋂ L∞ω where the L of L∞ω is any language in A. A theory T in LA is consistent if there is no derivation in A of a contradiction from T. is LA with new constants ca for each a and A. The basic terms of consist of the constants of and the terms f(ca1,…,cam) built directly from constants using functions f of . The symbol t is used for basic terms. A theory T in LA is Σ if it is defined by a formula of L(). The formula φ⌝ is a logical equivalent of ¬φ defined by: (1) φ⌝ = ¬φ if φ is atomic; (2) (¬φ)⌝ = φ (3) (⋁φ∈Φ φ)⌝ = ⋀φ∈Φ φ⌝; (4) (⋀φ∈Φ φ) ⋁φ∈Φ φ⌝; (5) (∃χφ(x))⌝ ∀χφ⌝(x); ∀χφ(x))⌝ = ∃χφ⌝(x).


2004 ◽  
Vol 10 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Jouko Väänänen

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness. Any set of sentences of cardinality ≤ κ, every finite subset of which has a model, has itself a model. Löwenheim-Skolem Theorem down to κ. If a sentence of the logic has a model, it has a model of cardinality at most κ. Interpolation Property. If ϕ and ψ are sentences such that ⊨ ϕ → Ψ, then there is θ such that ⊨ ϕ → θ, ⊨ θ → Ψ and the vocabulary of θ is the intersection of the vocabularies of ϕ and Ψ.Lindstrom's famous theorem characterized first order logic as the maximal ℵ0-compact logic with Downward Löwenheim-Skolem Theorem down to ℵ0. With his new concept of absolute logics Barwise was able to get similar characterizations of infinitary languages Lκω. But hopes were quickly frustrated by difficulties arising left and right, and other areas of model theory came into focus, mainly stability theory. No new characterizations of logics comparable to the early characterization of first order logic given by Lindström and of infinitary logic by Barwise emerged. What was first called soft model theory turned out to be as hard as hard model theory.


2006 ◽  
Vol 71 (4) ◽  
pp. 1200-1222 ◽  
Author(s):  
D. Bellé ◽  
F. Parlamento

AbstractLet V be the cumulative set theoretic hierarchy, generated from the empty set by taking powers at successor stages and unions at limit stages and. following [2], let the primitive language of set theory be the first order language which contains binary symbols for equality and membership only. Despite the existence of ∀∀-formulae in the primitive language, with two free variables, which are satisfiable in ∀ but not by finite sets ([5]). and therefore of ∃∃∀∀ sentences of the same language, which are undecidable in ZFC without the Axiom of Infinity, truth in V for ∃*∀∀-sentences of the primitive language, is decidable ([1]). Completeness of ZF with respect to such sentences follows.


1971 ◽  
Vol 36 (2) ◽  
pp. 216-228 ◽  
Author(s):  
Jerome Malitz

The material presented here belongs to the model theory of the Lκ, λ languages. Our results are either infinitary analogs of important theorems in finitary model theory, or else show that such analogs do not exist.For example, it is well known that whenever i, and , have the same true Lω, ω sentences (i.e., are elementarily equivalent) for i = 1, 2, then the cardinal sums 1 + 2 and + have the same true Lω, ω sentences, and the direct products 1 · 2 and · have the same true Lω, ω sentences [3]. We show that this is true when ‘Lω, ω’ is replaced by ‘Lκ, λ’ if and only if κ is strongly inaccessible. For Lω1, ω this settles a question, posed by Lopez-Escobar [7].In §3 we give a complete description of the expressive power of those sentences of Lκ, λ in which the identity symbol is the only relation symbol which occurs. This extends a result by Hanf [4].


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.


1979 ◽  
Vol 44 (4) ◽  
pp. 549-558
Author(s):  
Carl F. Morgenstern

In this paper we indicate how compact languages containing the Magidor-Malitz quantifiers Qκn in different cardinalities can be amalgamated to yield more expressive, compact languages.The language Lκ<ω, originally introduced by Magidor and Malitz [9], is a natural extension of the language L(Q) introduced by Mostowski and investigated by Fuhrken [6], [7], Keisler [8] and Vaught [13]. Intuitively, Lκ<ω is first-order logic together with quantifiers Qκn (n ∈ ω) binding n free variables which express “there is a set X of cardinality κ such than any n distinct elements of X satisfy …”, or in other words, iff the relation on determined by φ contains an n-cube of cardinality κ. With these languages one can express a variety of combinatorial statements of the type considered by Erdös and his colleagues, as well as concepts in universal algebra which are beyond the scope of first-order logic. The model theory of Lκ<ω has been further developed by Badger [1], Magidor and Malitz [10] and Shelah [12].We refer to a language as being < κ compact if, given any set of sentences Σ of the language, if Σ is finitely satisfiable and ∣Σ∣ < κ, then Σ has a model. The phrase countably compact is used in place of <ℵ1 compact.


1980 ◽  
Vol 77 ◽  
pp. 33-39 ◽  
Author(s):  
Yuichi Komori

The first order language ℒ that we consider has two nullary function symbols 0, 1, a unary function symbol –, a binary function symbol +, a unary relation symbol 0 <, and the binary relation symbol = (equality). Let ℒ′ be the language obtained from ℒ, by adding, for each integer n > 0, the unary relation symbol n| (read “n divides”).


Sign in / Sign up

Export Citation Format

Share Document