Aquatic Invertebrate Abundance in Relation to Changing Marsh Vegetation

1976 ◽  
Vol 95 (2) ◽  
pp. 313 ◽  
Author(s):  
David K. Voigts
Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 99
Author(s):  
Amanda Pachomski ◽  
Stacy McNulty ◽  
Carol Foss ◽  
Jonathan Cohen ◽  
Shannon Farrell

The Rusty Blackbird (Euphagus carolinus) is an imperiled migratory songbird that breeds in and near the boreal wetlands of North America. Our objective was to investigate factors associated with Rusty Blackbird wetland use, including aquatic invertebrate prey and landscape features, to better understand the birds’ habitat use. Using single-season occupancy modeling, we assessed breeding Rusty Blackbird use of both active and inactive beaver-influenced wetlands in New Hampshire and Maine, USA. We conducted timed, unlimited-radius point counts of Rusty Blackbirds at 60 sites from May to July 2014. Following each point count, we sampled aquatic invertebrates and surveyed habitat characteristics including percent mud cover, puddle presence/absence, and current beaver activity. We calculated wetland size using aerial imagery and calculated percent conifer cover within a 500 m buffer of each site using the National Land Cover Database 2011. Percent mud cover and invertebrate abundance best predicted Rusty Blackbird use of wetlands. Rusty Blackbirds were more likely to be found in sites with lower percent mud cover and higher aquatic invertebrate abundance. Sites with Rusty Blackbird detections had significantly higher abundances of known or likely prey items in the orders Amphipoda, Coleoptera, Diptera, Odonata, and Trichoptera. The probability of Rusty Blackbird detection was 0.589 ± 0.06 SE. This study provides new information that will inform habitat conservation for this imperiled species in a beaver-influenced landscape.


2013 ◽  
Vol 4 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
Emily S. Albin ◽  
Mark A. Kaemingk ◽  
David W. Willis

Abstract Aquatic invertebrate communities are important to shallow lake ecosystem form and function, providing vital components to the food web and thereby important to achieving lake management goals. We characterized lake invertebrate communities and physicochemical variables in six Nebraska Sandhill lakes and examined these characteristics within an alternative stable state framework. Surveys were conducted during 2005 within each of these lakes by sampling aquatic macroinvertebrate abundance, zooplankton abundance and biomass, phytoplankton biomass, and physicochemical variables. When placed within an alternative stable state framework, the response variables exhibited a gradient of different ecosystem states. Two lakes appeared congruent with the clear water state (dense submergent vegetation, high invertebrate abundance and diversity, and low phytoplankton), two lakes were congruent with the turbid water state (high phytoplankton, low vegetation coverage, and low invertebrate abundance and diversity), and two lakes were intermediate, likely in a state of hysteresis (i.e., multiple states under equal environmental conditions). Principal component groupings further supported these findings by following similar lake-specific patterns with attributes of each stable state grouping meaningfully according to the observed lake states. The lakes contained varied fish communities, potentially influencing many measured metrics, through a top-down mechanism. Generally, lakes dominated by piscivorous fish displayed the clear water state, whereas lakes with abundant planktivores displayed the turbid water state. Shallow lakes containing dense invertebrate communities likely provide a rich food base to important fauna (migratory waterfowl) that aid in reaching desired management objectives for these systems. Multiple small lakes, in proximity, displaying divergent ecosystem states invites the opportunity for more in-depth analyses of driving mechanisms that will undoubtedly add to our ability to effectively manage these systems in the future.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


Estuaries ◽  
1998 ◽  
Vol 21 (4) ◽  
pp. 818 ◽  
Author(s):  
Jenneke M. Visser ◽  
Charles E. Sasser ◽  
Robert H. Chabreck ◽  
R. G. Linscombe

Sign in / Sign up

Export Citation Format

Share Document