Large-Scale Variation in Assemblage Structure of Red Sea Butterflyfishes and Angelfishes

1992 ◽  
Vol 19 (3) ◽  
pp. 239 ◽  
Author(s):  
Callum M. Roberts ◽  
Alexander R. Dawson Shepherd ◽  
Rupert F. G. Ormond
2009 ◽  
Vol 25 (5) ◽  
pp. 662-663 ◽  
Author(s):  
Olivier Martin ◽  
Armand Valsesia ◽  
Amalio Telenti ◽  
Ioannis Xenarios ◽  
Brian J. Stevenson

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125743 ◽  
Author(s):  
Enrique Blanco Gonzalez ◽  
Masato Aritaki ◽  
Halvor Knutsen ◽  
Nobuhiko Taniguchi

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chris Sutherland ◽  
Angela K. Fuller ◽  
J. Andrew Royle ◽  
Matthew P. Hare ◽  
Sean Madden

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2018 ◽  
Vol 15 (24) ◽  
pp. 7379-7401 ◽  
Author(s):  
Angela M. Kuhn ◽  
Katja Fennel ◽  
Ilana Berman-Frank

Abstract. Recent studies demonstrate that marine N2 fixation can be carried out without light by heterotrophic N2 fixers (diazotrophs). However, direct measurements of N2 fixation in aphotic environments are relatively scarce. Heterotrophic as well as unicellular and colonial photoautotrophic diazotrophs are present in the oligotrophic Gulf of Aqaba (northern Red Sea). This study evaluates the relative importance of these different diazotrophs by combining biogeochemical models with time series measurements at a 700 m deep monitoring station in the Gulf of Aqaba. At this location, an excess of nitrate, relative to phosphate, is present throughout most of the water column and especially in deep waters during stratified conditions. A relative excess of phosphate occurs only at the water surface during nutrient-starved conditions in summer. We show that a model without N2 fixation can replicate the observed surface chlorophyll but fails to accurately simulate inorganic nutrient concentrations throughout the water column. Models with N2 fixation improve simulated deep nitrate by enriching sinking organic matter in nitrogen, suggesting that N2 fixation is necessary to explain the observations. The observed vertical structure of nutrient ratios and oxygen is reproduced best with a model that includes heterotrophic as well as colonial and unicellular autotrophic diazotrophs. These results suggest that heterotrophic N2 fixation contributes to the observed excess nitrogen in deep water at this location. If heterotrophic diazotrophs are generally present in oligotrophic ocean regions, their consideration would increase current estimates of global N2 fixation and may require explicit representation in large-scale models.


2019 ◽  
Vol 11 (19) ◽  
pp. 2224 ◽  
Author(s):  
Kamal A. Alawad ◽  
Abdullah M. Al-Subhi ◽  
Mohammed A. Alsaafani ◽  
Turki M. Alraddadi ◽  
Monica Ionita ◽  
...  

Falling between seasonal cycle variability and the impact of local drivers, the sea level in the Red Sea and Gulf of Aden has been given less consideration, especially with large-scale modes. With multiple decades of satellite altimetry observations combined with good spatial resolution, the time has come for diagnosis of the impact of large-scale modes on the sea level in those important semi-enclosed basins. While the annual cycle of sea level appeared as a dominant cycle using spectral analysis, the semi-annual one was also found, although much weaker. The first empirical orthogonal function mode explained, on average, about 65% of the total variance throughout the seasons, while their principal components clearly captured the strong La Niña event (1999–2001) in all seasons. The sea level showed a strong positive relation with positive phase El Niño Southern Oscillation in all seasons and a strong negative relation with East Atlantic/West Russia during winter and spring over the study period (1993–2017). We show that the unusually stronger easterly winds that are displaced north of the equator generate an upwelling area near the Sumatra coast and they drive both warm surface and deep-water masses toward the West Indian Ocean and Arabian Sea, rising sea level over the Red Sea and Gulf of Aden. This process could explain the increase of sea level in the basin during the positive phase of El Niño Southern Oscillation events.


Seismic exploration at sea has established that the oceanic crust is completely different from that of the continents. If we accept continental drift, it is therefore necessary to invoke a mechanism for the evolution of new oceanic crust. An attempt is made to locate regions where new oceanic crust may be forming and it is suggested that these regions are related to regions of uprising convection in the mantle. The crustal structures beneath the Red Sea and the Gulf of California are very similar and closer to oceanic than continental. As these are seismically active regions of extension, it seems reasonable to suppose that they represent areas where new oceanic crust is evolving in regions of continental break-up. These rift zones are in continuity with the seismically active oceanic rifts where similar seismic velocities (about 7 km/s) have been found and it is inferred that the oceanic rifts also represent regions where new oceanic crust is evolving. These are generally near the centres of the oceans. The tensional rift zones which are regions of shallow seismicity help to locate regions of rising convection currents in the mantle. It is further suggested that regions of deep and intermediate focus earthquakes locate regions of descending convection currents and maps of earthquake distributions are used to reveal a possible large-scale pattern of mantle convection. It is supposed that new oceanic crust evolves over the rising convection currents. A study is therefore made of the crustal sections for the Red Sea, Gulf of California and mid-oceanic rift regions and these are compared with typical continental and oceanic crusts. A possible mechanism for the evolution of new oceanic crust is given based on the isostatic equilibrium of oceans and continents.


Sign in / Sign up

Export Citation Format

Share Document