Time-dependent solution and optimal control of a bulk service queue

1997 ◽  
Vol 34 (1) ◽  
pp. 258-266 ◽  
Author(s):  
Shokri Z. Selim

We consider the queueing system denoted by M/MN/1/N where customers are served in batches of maximum size N. The model is motivated by a traffic application. The time-dependent probability distribution for the number of customers in the system is obtained in closed form. The solution is used to predict the optimal service rates during a finite time horizon.

1997 ◽  
Vol 34 (01) ◽  
pp. 258-266
Author(s):  
Shokri Z. Selim

We consider the queueing system denoted by M/MN /1/N where customers are served in batches of maximum size N. The model is motivated by a traffic application. The time-dependent probability distribution for the number of customers in the system is obtained in closed form. The solution is used to predict the optimal service rates during a finite time horizon.


2011 ◽  
Vol 2 (4) ◽  
pp. 75-88
Author(s):  
Veena Goswami ◽  
G. B. Mund

This paper analyzes a discrete-time infinite-buffer Geo/Geo/2 queue, in which the number of servers can be adjusted depending on the number of customers in the system one at a time at arrival or at service completion epoch. Analytical closed-form solutions of the infinite-buffer Geo/Geo/2 queueing system operating under the triadic (0, Q N, M) policy are derived. The total expected cost function is developed to obtain the optimal operating (0, Q N, M) policy and the optimal service rate at minimum cost using direct search method. Some performance measures and sensitivity analysis have been presented.


1987 ◽  
Vol 19 (1) ◽  
pp. 202-218 ◽  
Author(s):  
Richard R. Weber ◽  
Shaler Stidham

We prove a monotonicity result for the problem of optimal service rate control in certain queueing networks. Consider, as an illustrative example, a number of ·/M/1 queues which are arranged in a cycle with some number of customers moving around the cycle. A holding cost hi(xi) is charged for each unit of time that queue i contains xi customers, with hi being convex. As a function of the queue lengths the service rate at each queue i is to be chosen in the interval , where cost ci(μ) is charged for each unit of time that the service rate μis in effect at queue i. It is shown that the policy which minimizes the expected total discounted cost has a monotone structure: namely, that by moving one customer from queue i to the following queue, the optimal service rate in queue i is not increased and the optimal service rates elsewhere are not decreased. We prove a similar result for problems of optimal arrival rate and service rate control in general queueing networks. The results are extended to an average-cost measure, and an example is included to show that in general the assumption of convex holding costs may not be relaxed. A further example shows that the optimal policy may not be monotone unless the choice of possible service rates at each queue includes 0.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
K. V. Abdul Rasheed ◽  
M. Manoharan

We consider discouraged arrival of Markovian queueing systems whose service speed is regulated according to the number of customers in the system. We will reduce the congestion in two ways. First we attempt to reduce the congestion by discouraging the arrivals of customers from joining the queue. Secondly we reduce the congestion by introducing the concept of service switches. First we consider a model in which multiple servers have three service ratesμ1,μ2, andμ(μ1≤μ2<μ), say, slow, medium, and fast rates, respectively. If the number of customers in the system exceeds a particular pointK1orK2, the server switches to the medium or fast rate, respectively. For this adaptive queueing system the steady state probabilities are derived and some performance measures such as expected number in the system/queue and expected waiting time in the system/queue are obtained. Multiple server discouraged arrival model having one service switch and single server discouraged arrival model having one and two service switches are obtained as special cases. A Matlab program of the model is presented and numerical illustrations are given.


2010 ◽  
Vol 47 (2) ◽  
pp. 459-473 ◽  
Author(s):  
Brian H. Fralix ◽  
Germán Riaño

We take a new look at transient, or time-dependent Little laws for queueing systems. Through the use of Palm measures, we show that previous laws (see Bertsimas and Mourtzinou (1997)) can be generalized. Furthermore, within this framework, a new law can be derived as well, which gives higher-moment expressions for very general types of queueing system; in particular, the laws hold for systems that allow customers to overtake one another. What is especially novel about our approach is the use of Palm measures that are induced by nonstationary point processes, as these measures are not commonly found in the queueing literature. This new higher-moment law is then used to provide expressions for all moments of the number of customers in the system in an M/G/1 preemptive last-come-first-served queue at a time t > 0, for any initial condition and any of the more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-repeat with and without resampling) that are analogous to the special cases found in Abate and Whitt (1987c), (1988). These expressions are then used to derive a nice structural form for all of the time-dependent moments of a regulated Brownian motion (see Abate and Whitt (1987a), (1987b)).


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Deena Merit C. K. ◽  
Haridass M

When the required number of customers is available in the general bulk service (GBS) queueing system, the server begins service. Otherwise, the server will remain inactive until the number of consumers in the queue reaches that minimum required number. Customers that have already come must wait throughout this time, regardless of their arrival time. In some circumstances, like specimens awaiting testing in a clinical laboratory or perishable commodities awaiting delivery, it is necessary to finish services before the expiration date. It might only be achievable if consumers’ waiting times are kept under control. As a result, the flexible general bulk service (FGBS) rule is developed in this article to provide flexibility in batching. The effectiveness of FGBS implementation has been demonstrated using two examples: a clinical laboratory and a distribution center. To justify the suggested model, a simulation study and numerical illustration are provided.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 259 ◽  
Author(s):  
Messaoud Bounkhel ◽  
Lotfi Tadj ◽  
Ramdane Hedjar

A flexible single-server queueing system is considered in this paper. The server adapts to the system size by using a strategy where the service provided can be either single or bulk depending on some threshold level c. If the number of customers in the system is less than c, then the server provides service to one customer at a time. If the number of customers in the system is greater than or equal to c, then the server provides service to a group of c customers. The service times are exponential and the service rates of single and bulk service are different. While providing service to either a single or a group of customers, the server may break down and goes through a repair phase. The breakdowns follow a Poisson distribution and the breakdown rates during single and bulk service are different. Also, repair times are exponential and repair rates during single and bulk service are different. The probability generating function and linear operator approaches are used to derive the system size steady-state probabilities.


2005 ◽  
Vol 22 (02) ◽  
pp. 239-260 ◽  
Author(s):  
R. ARUMUGANATHAN ◽  
K. S. RAMASWAMI

We analyze a Mx/G(a,b)/1 queueing system with fast and slow service rates and multiple vacations. The server does the service with a faster rate or a slower rate based on the queue length. At a service completion epoch (or) at a vacation completion epoch if the number of customers waiting in the queue is greater than or equal to N (N > b), then the service is rendered at a faster rate, otherwise with a slower service rate. After finishing a service, if the queue length is less than 'a' the server leaves for a vacation of random length. When he returns from the vacation, if the queue length is still less than 'a' he leaves for another vacation and so on until he finally finds atleast 'a' customers waiting for service. After a service (or) a vacation, if the server finds atleast 'a' customers waiting for service say ξ, then he serves a batch of min (ξ, b) customers, where b ≥ a. We derive the probability generating function of the queue size at an arbitrary time. Various performance measures are obtained. A cost model is discussed with a numerical solution.


2010 ◽  
Vol 47 (02) ◽  
pp. 459-473 ◽  
Author(s):  
Brian H. Fralix ◽  
Germán Riaño

We take a new look at transient, or time-dependent Little laws for queueing systems. Through the use of Palm measures, we show that previous laws (see Bertsimas and Mourtzinou (1997)) can be generalized. Furthermore, within this framework, a new law can be derived as well, which gives higher-moment expressions for very general types of queueing system; in particular, the laws hold for systems that allow customers to overtake one another. What is especially novel about our approach is the use of Palm measures that are induced by nonstationary point processes, as these measures are not commonly found in the queueing literature. This new higher-moment law is then used to provide expressions for all moments of the number of customers in the system in an M/G/1 preemptive last-come-first-served queue at a time t &gt; 0, for any initial condition and any of the more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-repeat with and without resampling) that are analogous to the special cases found in Abate and Whitt (1987c), (1988). These expressions are then used to derive a nice structural form for all of the time-dependent moments of a regulated Brownian motion (see Abate and Whitt (1987a), (1987b)).


Sign in / Sign up

Export Citation Format

Share Document