Primary Production and Chlorophyll a Content of Nanoplankton in a Eutrophic Lake

Oikos ◽  
1971 ◽  
Vol 22 (2) ◽  
pp. 230 ◽  
Author(s):  
Curt Gelin
1993 ◽  
Vol 28 (6) ◽  
pp. 29-33 ◽  
Author(s):  
V. Vyhnálek ◽  
Z. Fišar ◽  
A. Fišarová ◽  
J. Komárková

The in vivo fluorescence of chlorophyll a was measured in samples of natural phytoplankton taken from the Římov Reservoir (Czech Republic) during the years 1987 and 1988. The fluorescence intensities of samples either with or without addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron, DCMU) were found reliable for calculating the concentration of chlorophyll a during periods when cyanobacteria were not abundant. The correction for background non-chlorophyll fluorescence appeared to be essential. No distinct correlation between a DCMU-induced increase of the fluorescence and primary production of phytoplankton was found.


1994 ◽  
Vol 98 (31) ◽  
pp. 7725-7735 ◽  
Author(s):  
H.-C. Chang ◽  
R. Jankowiak ◽  
N. R. S. Reddy ◽  
C. F. Yocum ◽  
R. Picorel ◽  
...  

2014 ◽  
Author(s):  
Y. Sakuno ◽  
K. Hatakeyama ◽  
Y. Miyamoto ◽  
A. Hatsuda ◽  
A. Mori ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bruno Degaspari Minardi ◽  
Ana Paula Lorenzen Voytena ◽  
Marisa Santos ◽  
Áurea Maria Randi

Elaphoglossum luridum(Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. TheE. luridumfrond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (Iopt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed inE. luridumin response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in theE. luridumfrond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation.


2016 ◽  
Vol 11 (3) ◽  
pp. 409
Author(s):  
J. Tri Astuti ◽  
Lies Sriwuryandari ◽  
Ekoputro Agung Putro ◽  
T. Sembiring

Micro-algae are to be an attractive way to produce bio-diesel due to high photosynthetic yields and lipid accumulation in cells. This high productivity combined with possibility to uptake CO2 stimulated its utilization as a biological mitigation method of CO2, at once as an alternative renewable source of energy. Growth characteristics and chemical composition of micro-algae can be altered by culture environment. Nutrient sufficiency,included magnesium element (Mg2+) is important factors on overall biochemical composition. In study, Nannochloropsis sp was cultivated in Erlenmeyer 250 ml containing 200 ml f/2 medium. There are three groups of treatment with different levelof magnesium (Mg2+), i.e. 0 (M0); 0.1mgL-1 (M1); and 1.0 mgL-1 (M2). All treatment was designed triplicate in batch system. Culture was then aerated continuously with sterile atmospheric air (1.5 L.min-1). Cells were harvested on 25th day after inoculation and analyzed. Data showed that Chlorophyll-a increased linearly with time and maximum at 18th days of growth period, i.e. 23.57; 26.44; and 27.74mgL-1, for M0; M1; and M2,respectively. Chlorophyll-a content decreased significantly when pH dropped to 5-6.Enrichment with Mg2+ increased the chlorophyll-a content 12.2-17.7%. Dry cell reached 375-400mgL-1 in all treatment. Lipid content of Nannochloropsis sp in control (M0) is 55.3%, higher than M1 and M2. Saturated fatty acid tends to increase from 80.70 (M0)to 96.70 (M1) and 94.53% (M2). Fatty acid of M0 and M1 was composed dominantly by palmitic acid (C16:0), i.e. 49.19-70.75% total fatty acids. Meanwhile, M2 treatment was dominantly by lauric acid (C12:0), i.e. 32.98%.Keywords: CO2 biological mitigation, chlorophyll-a, fatty acid, lipid, agnesium,microalgae, Nannochloropsis sp, photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document