flag leaves
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 41)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Marin Tanaka ◽  
Mamoru Keira ◽  
Dong-Kyung Yoon ◽  
Tadahiko Mae ◽  
Hiroyuki Ishida ◽  
...  

Abstract Background: Improvement in photosynthesis is one of the most promising approaches to increase grain yields in crop plants. In our previous research using an isolated experimental paddy field, transgenic rice plants overproducing Rubisco by 30% (RBCS-sense rice plants) showed up to 28% increase in grain yields under sufficient nitrogen (N) fertilization. Furthermore, the plant N contents above-ground sections and Rubisco contents of the flag leaves were higher in the RBCS-sense rice plants than the wild-type rice plants during the ripening period, which may be reasons for the increased yields.Result: In this research, the photosynthetic capacity and canopy architecture were analyzed to explore factors for the increased yields of RBCS-sense rice plants. It was found that N had already been preferentially distributed into the flag leaves at the early ripening stage, contributing to maintaining higher Rubisco content levels in the enlarged flag leaves and extending the lifespan of the flag leaves of RBCS-sense rice plants throughout ripening periods under sufficient N fertilization. The higher amounts of Rubisco also improved the photosynthetic activity in the flag leaves throughout the ripening period. Although the enlarged flag leaves of the RBCS-sense rice plants occupied large spatial areas of the uppermost layer in the canopy, no significant prevention of light penetration to leaves below the flag leaves was observed. Additionally, since the CO2 assimilation rates of lower leaves between wild-type and RBCS-sense rice plants were the same at the early ripening stage, the lower leaves did not contribute to an increase in yields between the two genotypes.Conclusion: It was concluded that improvements in the photosynthetic capacity by higher leaf N and Rubisco contents, enlarged the leaf area, and extended the lifespan of flag leaves, causing an increase in grain yields of RBCS-sense rice plants grown under sufficient N fertilization.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2415
Author(s):  
Zorana Katanić ◽  
Selma Mlinarić ◽  
Nataša Katanić ◽  
Josipa Ćosić ◽  
Valentina Španić

Fusarium head blight (FHB) is one of the most serious fungal diseases of wheat (Triticum aestivum L.). It causes major reduction of grain yield and quality, while the safety of wheat products is at risk due to mycotoxin contaminations. To contribute to a better understanding of mechanisms governing more efficient defense strategies against FHB, an evaluation of photosynthetic efficiency was performed during different phases of infection, i.e., before visual symptoms occur, at the onset and after the development of disease symptoms. Six different winter wheat varieties were artificially inoculated with the most significant causal agents of FHB (Fusarium graminearum and F. culmorum) at two different locations. Photosynthetic efficiency was assessed in flag leaves and ears of inoculated and untreated (control) plants based on measurements of chlorophyll a fluorescence rise kinetics and the calculation of JIP-test parameters. Obtained results indicate that the response of wheat to Fusarium infection includes changes in photosynthetic efficiency which can encompass alternating reductions and increases in photosynthetic performance during the course of the infection in both flag leaves and ears. FHB-induced photosynthetic adjustments were shown to be somewhat variety-specific, but location was shown to be a more significant factor in modulating the response of wheat to Fusarium infection. Changes in chlorophyll a fluorescence rise kinetics could be detected prior to visible symptoms of the disease. Therefore, this method could be applied for the early detection of Fusarium infection, particularly the analysis of L-band appearance, which showed a similar response in all inoculated plants, regardless of variety or location.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1742
Author(s):  
Olive Onyemaobi ◽  
Harriet Sangma ◽  
Gagan Garg ◽  
Xiaomei Wallace ◽  
Sue Kleven ◽  
...  

Drought stress requires plants to adjust their water balance to maintain tissue water levels. Isohydric plants (‘water-savers’) typically achieve this through stomatal closure, while anisohydric plants (‘water-wasters’) use osmotic adjustment and maintain stomatal conductance. Isohydry or anisohydry allows plant species to adapt to different environments. In this paper we show that both mechanisms occur in bread wheat (Triticum aestivum L.). Wheat lines with reproductive drought-tolerance delay stomatal closure and are temporarily anisohydric, before closing stomata and become isohydric at higher threshold levels of drought stress. Drought-sensitive wheat is isohydric from the start of the drought treatment. The capacity of the drought-tolerant line to maintain stomatal conductance correlates with repression of ABA synthesis in spikes and flag leaves. Gene expression profiling revealed major differences in the drought response in spikes and flag leaves of both wheat lines. While the isohydric drought-sensitive line enters a passive growth mode (arrest of photosynthesis, protein translation), the tolerant line mounts a stronger stress defence response (ROS protection, LEA proteins, cuticle synthesis). The drought response of the tolerant line is characterised by a strong response in the spike, displaying enrichment of genes involved in auxin, cytokinin and ethylene metabolism/signalling. While isohydry may offer advantages for longer term drought stress, anisohydry may be more beneficial when drought stress occurs during the critical stages of wheat spike development, ultimately improving grain yield.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yonghui Fan ◽  
Zhaoyan Lv ◽  
Ting Ge ◽  
Yuxing Li ◽  
Wei Yang ◽  
...  

The asymmetric warming in diurnal and seasonal temperature patterns plays an important role in crop distribution and productivity. Asymmetric warming during the early growth periods of winter wheat profoundly affects its vegetative growth and post-anthesis grain productivity. Field experiments were conducted on winter wheat to explore the impact of night warming treatment in winter (Winter warming treatment, WT) or spring (Spring warming treatment, ST) on the senescence of flag leaves and yield of wheat plants later treated with night warming during grain filling (Warming treatment during grain filling, FT). The results showed that FT decreased wheat yield by reducing the number of grains per panicle and per 1,000-grain weight and that the yield of wheat plants treated with FT declined to a greater extent than that of wheat plants treated with WT + FT or ST + FT. The net photosynthetic rate, chlorophyll content, and chlorophyll fluorescence parameters of the flag leaves of wheat plants treated with WT + FT or ST + FT were higher than those under the control treatment from 0 to 7 days after anthesis (DAA) but were lower than those under the control treatment and higher than those of wheat plants treated with FT alone from 14 to 28 DAA. The soluble protein and Rubisco contents in the flag leaves of wheat plants treated with WT + FT or ST + FT were high in the early grain-filling period and then gradually decreased to below those of the control treatment. These contents were greater in wheat plants treated with WT + FT than in wheat plants treated with ST + FT from 0 to 14 DAA, whereas the opposite was true from 21 to 28 DAA. Furthermore, WT + FT and ST + FT inhibited membrane lipid peroxidation by increasing superoxide dismutase and peroxidase activities and lowering phospholipase D (PLD), phosphatidic acid (PA), lipoxygenase (LOX), and free fatty acid levels in the early grain-filling period, but their inhibitory effects on membrane lipid peroxidation gradually weakened during the late grain-filling period. Night-warming priming alleviated the adverse effect of post-anthesis warming on yield by delaying the post-anthesis senescence of flag leaves.


Author(s):  
Yan Wang ◽  
Min Huang ◽  
Peng Gao ◽  
Hao Chen ◽  
Yu Zheng ◽  
...  

II YOU 838 (Oryza sativa subsp. indica), crossed by the maternal II-32A and paternal Fu Hui 838, was one of the most widely cultivated hybrid rice in China. Fu Hui 838, which has resistance to high temperature, was generated by mutation technology in 1990. Previous field-testing showed that II YOU 838 had tolerance to high temperature stress and this was confirmed in the present study. The mechanism of heat tolerance of II YOU 838 is not understood. The present study reports gene expression of a representative sample of heat-responsive proteins in II YOU 838 flag leaves subjected to heat stress during flowering. Differential expression of the heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), small heat shock protein (smHSP), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were studied under heat stress and optimum temperatures in flag leaves of II YOU 838. All six genes studied were responsive to high temperatures. Quantitative real-time PCR showed increased expression of the heat shock protein genes and antioxidant enzyme genes in flag leaves under heat stress. With increasing number of days gene expression decreased under high temperature. Peak expression of SOD, POD, hsp70 and hsp90 was on Day 2 under 39 ℃. On Day 3, the expression of CAT under 39 ℃ was the highest. The expression of smhsp was highest on Day 3 under 27 ℃, followed by that on Day 2 under 27 ℃. The maximum expression values were observed on Day 2 or Day 3 after beginning of heat stress. This suggests that hsp90, hsp70, SOD and POD are principally involved in early responses to heat in rice flag leaves, and that smhsp may play a role in the recovery mechanism in rice after heat stress. This may provide insights into the mechanism of heat-tolerance in rice


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12099
Author(s):  
Zhihang Hu ◽  
Xinyu Chen ◽  
Liexiang Huangfu ◽  
Shaobo Shao ◽  
Xiang Tao ◽  
...  

Oryza longistaminata, a perennial wild species, is widely distributed in the African continent. It has strong tolerance to biotic and abiotic stresses, and high biomass production on poor soils. Chlorophyll biosynthesis is important for photosynthesis in rice. However, the chlorophyll biosynthesis and related gene profiles of O. longistaminata and its descendants remained unclear. Here, the F1 generation of O. sativa and O. longistaminata were obtained. Then, the comparative analysis morphology, anatomical structure, and transcriptional regulatory networks of chlorophyll biosynthesis were detected and analyzed. Results showed that the F1 generation has obvious long awn, similar with that of the male parent. The purple color of the long awn is different from that of the male parent. Microstructural results showed that the flag leaves of F1 have large mesophyll cell gaps in the upper- and lower-positions, small mesophyll cell gaps in the middle position, and more chloroplasts. Increased chlorophyll content was also observed in the F1 generation. In the lower-position flag leaves, the total chlorophyll contents of F1 were 1.55 and 1.5 times those of O. sativa and O. longistaminata, respectively. POR, MgCH and HEMA1 showed higher expression levels than the other related genes selected in the chlorophyll biosynthesis pathway. The HEMA1 expression level in the middle-position flag leaves of O. longistaminata was the highest, and it was 2.83 and 2.51 times that of O. sativa and F1, respectively. The expression level of DVR gene in lower-position flag leaves of F1 were 93.16% and 95.06% lower than those of O. sativa and O. longistaminata, respectively. This study provided a potential reference for studying the photosynthesis and heterosis utilization of O. longistaminata.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuting Li ◽  
Xin Li ◽  
Yujie Li ◽  
Shu Zhuang ◽  
Yongxiang Feng ◽  
...  

Recently, several reports have suggested that the growth and grain yield of wheat are significantly influenced by high atmospheric carbon dioxide concentration (CO2) because of it photosynthesis enhancing effects. Moreover, it has been proposed that plants with large carbon sink size will benefit more from CO2 enrichment than those with small carbon sink size. However, this hypothesis is yet to be test in winter wheat plant. Therefore, the aim of this study was to examine the effect of elevated CO2 (eCO2) conditions on the quantum efficiency of photosystem II (PSII) photochemistry in large ear-type (cv. Shanhan 8675; greater ear C sink strength) and small multiple ear-type (cv. Early premium; greater vegetative C source strength) winter wheat varieties. The experiment was conducted in a free air CO2 enrichment (FACE) facility, and three de-excitation pathways of the primary reaction of PSII of flag leaf at the anthesis stage were evaluated under two CO2 concentrations (ambient [CO2], ∼415 μmol⋅mol–1, elevated [CO2], ∼550 μmol⋅mol–1) using a non-destructive technique of modulated chlorophyll fluorescence. Additionally, the grain yield of the two varieties was determined at maturity. Although elevated CO2 increased the quantum efficiency of PSII photochemistry (ΦPSII) of Shanhan 8675 (SH8675) flag leaves at the anthesis stage, the grain number per ear and 1,000-kernel weight were not significantly affected. In contrast, the ΦPSII of early premium (ZYM) flag leaves was significantly lower than that of SH8675 flag leaves at the anthesis stage, which was caused by an increase in the regulatory non-photochemical energy dissipation quantum (ΦNPQ) of PSII, suggesting that light energy absorbed by PSII in ZYM flag leaf was largely dissipated as thermal energy. The findings of our study showed that although SH8675 flag leaves exhibited higher C sink strength and quantum efficiency of PSII photochemistry at the anthesis stage, these factors alone do not ensure improved grain yield under eCO2 conditions.


2021 ◽  
Author(s):  
Shenglan Xia ◽  
Jie Wang ◽  
Zanming Chen ◽  
Hai Lan ◽  
Zhenguo Shen ◽  
...  

Abstract Cadmium (Cd) in agricultural soils can be taken up by wheat and transferred into the grains, risking human health. In this study, we tested the effects of nineteen foliar treatments alone, and also combined treatments on the Cd concentration of grains in pot/field experiments, and the field experiment, respectively. In addition, we tested the better growth period for foliar application to inhibit Cd accumulation in wheat grains. Foliar application of Ethylenediaminetetraacetic acid (EDTA), Sodium selenite (Se) and Sodium nitroprusside (SNP) can significantly reduce Cd concentration of wheat grains, with 49.2%, 29.6%, and 28.8% decreased respectively in the field. Foliar application of EDTA, Se, Zinc sulphate (Zn), Ascorbic acid (ASA), Sodium silicate (Si) and Ammonium molybdate (Mo) can significantly reduce Cd concentration of wheat grains in different treatments, with 32.3%, 32.0%, 27.7%, 27.7%, 26.3% and 25.9% decreased respectively in the pot. Thus, foliar application of 2 mM EDTA and 2 mM Se exerted excellent effects in controlling the Cd accumulation of wheat grains for both in pot and field experiment. We were concerned about the transfer of different aboveground tissues to the grain, foliar application with 0.1 mM Se or 2 mM EDTA significantly reduced Cd concentrations in grains both in grain filling stage and heading + grain-filling stage. Spraying at the filling stage of wheat has a better effect than at the heading stage for reducing the cadmium content in grains. In addition, the relationship between Cd concentration of grains and husks were significantly positive, while the relationship between Cd concentration of grains and flag leaves was significantly negative. Cd content in wheat grains decreased may be due to the Cd accumulation of flag leaves and the decrease of Cd transport from flag leaves and husks to the grains, which in turn reduces the transport of Cd to the grains.


2021 ◽  
Author(s):  
Qin Cheng ◽  
Shiying Huang ◽  
Peng Wang ◽  
Shilei Liu ◽  
Guangliang Wu ◽  
...  

Abstract Background: The health and physiology of flag leaves are closely related to rice yield, and flag leaves play an important role in providing photosynthetic products during grain filling, many breeding studies have tried to improve the performance of flag leaves. However, there are few studies on the heterosis of rice flag leaves up to now. Results: Thus, the present research is focused on the flag leaves heterosis of a widely used late-cropping indica super hybrid rice combination WFYT025 in China using a high-throughput next-generation RNA-seq strategy under different environment with two stages, trying to find some genes related to photosynthesis, transpiration, and development of seeds. Mid-parent heterosis (MPH) and higher parent heterosis (HPH) were estimated for the heterosis of flag leaf. Under the environment of middle rice, the number of genes up-regulated in CHT025, WFB and WFYT025 were 892,1,273 and 819, down-regulated in CHT025, WFB and WFYT025 were 616,1934 and 2196, respectively. Among the SDGhps on the first day after flowering, 10.9% had a dominant effect, 41.81% had a partial dominant effect, 22.07% had an additive effect and the remaining 25.22% had an over-dominant effect. Meanwhile, on the tenth day after flowering, there were 491 genes, accounting for 27.16%, showed over-dominance; 222 genes, accounting for 12.28%, showed dominance; 760 genes, accounting for 42.04%, showed partial dominance; and 335 genes, accounting for 18.52%, showed additive effect. Conclusion: The co-expressed gene sets via weighted gene co-expression network analysis (WGCNA) were identified, and total of 5,000 highly expressed genes were divided into 24 co-expression groups. In the two stages, we found 9 identical transcription factors. Except for 5 reported TFs, the other 4 TFs may play an important role in grain number and photosynthesis heterosis.


Sign in / Sign up

Export Citation Format

Share Document