Threespine Stickleback Gasterosteus aculeatus in Thingvallavatn: Habitat and Food in a Lake Dominated by Arctic Charr Salvelinus alpinus

Oikos ◽  
1992 ◽  
Vol 64 (1/2) ◽  
pp. 365 ◽  
Author(s):  
Odd Terje Sandlund ◽  
Pétur M. Jónasson ◽  
Bror Jonsson ◽  
Hilmar J. Malmquist ◽  
Skúli Skúlason ◽  
...  
2012 ◽  
Vol 279 (1736) ◽  
pp. 2255-2261 ◽  
Author(s):  
Ian A. Johnston ◽  
Bjarni K. Kristjánsson ◽  
Charles G. P. Paxton ◽  
Vera L. A. Vieira ◽  
Daniel J. Macqueen ◽  
...  

Intraspecific phenotypic variation is ubiquitous and often associated with resource exploitation in emerging habitats. For example, reduced body size has evolved repeatedly in Arctic charr ( Salvelinus alpinus L.) and threespine stickleback ( Gasterosteus aculeatus L.) across post-glacial habitats of the Northern Hemisphere. Exploiting these models, we examined how body size and myogenesis evolve with respect to the ‘optimum fibre size hypothesis’, which predicts that selection acts to minimize energetic costs associated with ionic homeostasis by optimizing muscle fibre production during development. In eight dwarf Icelandic Arctic charr populations, the ultimate production of fast-twitch muscle fibres (FN max ) was only 39.5 and 15.5 per cent of that in large-bodied natural and aquaculture populations, respectively. Consequently, average fibre diameter (FD) scaled with a mass exponent of 0.19, paralleling the relaxation of diffusional constraints associated with mass-specific metabolic rate scaling. Similar reductions in FN max were observed for stickleback, including a small-bodied Alaskan population derived from a larger-bodied oceanic stock over a decadal timescale. The results suggest that in species showing indeterminate growth, body size evolution is accompanied by strong selection for fibre size optimization, theoretically allowing resources saved from ionic homeostasis to be allocated to other traits affecting fitness, including reproduction. Gene flow between small- and large-bodied populations residing in sympatry may counteract the evolution of this trait.


1988 ◽  
Vol 23 (2) ◽  
pp. 301-307 ◽  
Author(s):  
L.A. Hunter ◽  
E. Scherer

Abstract Arctic charr (Salvelinus alpinus L.) were exposed to five levels of acidity between pH 6 and pH 3.8. Swimming performance as determined by critical swimming speeds was 67.5 cm · sࢤ1 or 4.4 body lengths per second for untreated fish (pH 7.8). Performance declined sharply below pH 4.5; at pH 3.8 it was reduced by 35% after 7 days of exposure. Tailbeat frequencies and ventilation rates showed no dose-response effects. At swimming speeds between 20 and 50 cm · sࢤ1, ventilation rates at all levels of acidity were higher than at the control level.


Ecotoxicology ◽  
2020 ◽  
Vol 29 (9) ◽  
pp. 1327-1346
Author(s):  
Mackenzie Anne Clifford Martyniuk ◽  
Patrice Couture ◽  
Lilian Tran ◽  
Laurie Beaupré ◽  
Nastassia Urien ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 899
Author(s):  
Fotis Pappas ◽  
Christos Palaiokostas

Incorporation of genomic technologies into fish breeding programs is a modern reality, promising substantial advances regarding the accuracy of selection, monitoring the genetic diversity and pedigree record verification. Single nucleotide polymorphism (SNP) arrays are the most commonly used genomic tool, but the investments required make them unsustainable for emerging species, such as Arctic charr (Salvelinus alpinus), where production volume is low. The requirement to genotype a large number of animals for breeding practices necessitates cost effective genotyping approaches. In the current study, we used double digest restriction site-associated DNA (ddRAD) sequencing of either high or low coverage to genotype Arctic charr from the Swedish national breeding program and performed analytical procedures to assess their utility in a range of tasks. SNPs were identified and used for deciphering the genetic structure of the studied population, estimating genomic relationships and implementing an association study for growth-related traits. Missing information and underestimation of heterozygosity in the low coverage set were limiting factors in genetic diversity and genomic relationship analyses, where high coverage performed notably better. On the other hand, the high coverage dataset proved to be valuable when it comes to identifying loci that are associated with phenotypic traits of interest. In general, both genotyping strategies offer sustainable alternatives to hybridization-based genotyping platforms and show potential for applications in aquaculture selective breeding.


Zoomorphology ◽  
2020 ◽  
Author(s):  
Harald Ahnelt ◽  
David Ramler ◽  
Maria Ø. Madsen ◽  
Lasse F. Jensen ◽  
Sonja Windhager

AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.


Author(s):  
L. Leveelahti ◽  
P. Leskinen ◽  
E.H. Leder ◽  
W. Waser ◽  
M. Nikinmaa

Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Juntao Hu ◽  
Sara J S Wuitchik ◽  
Tegan N Barry ◽  
Heather A Jamniczky ◽  
Sean M Rogers ◽  
...  

Abstract Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24–35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.


Sign in / Sign up

Export Citation Format

Share Document