Induction and Repair of DNA Double-Strand Breaks in the Same Dose Range as the Shoulder of the Survival Curve

1994 ◽  
Vol 140 (2) ◽  
pp. 161 ◽  
Author(s):  
Barbara Nevaldine ◽  
John A. Longo ◽  
Michael Vilenchik ◽  
Gerald A. King ◽  
Peter J. Hahn
2013 ◽  
Vol 28 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Lela Koricanac ◽  
Jelena Zakula ◽  
Otilija Keta ◽  
Pablo Cirrone ◽  
Giacomo Cuttone ◽  
...  

This study was conducted in order to evaluate the ability of carbon ions to induce DNA double-strand breaks and apoptosis in the radio-resistant human HTB140 melanoma cells. The cells were irradiated with 12C ions having the linear energy transfer of 258 keV/mm. Irradiations were performed in the dose range from 2 to 16 Gy. Induction of DNA double-strand breaks was evaluated 2 hour after irradiation through expression of gH2AX protein. Increased level of gH2AX detected in irradiated samples was especially high after irradiation with 12 and 16 Gy. Dose dependent increase of apoptosis was detected 48 hour after irradiation by flow-cytometry, with the maximum value of 20.4% after irradiation with 16 Gy, and the apoptotic index of 9.3. Pro-apoptotic effects of carbon ion beams were confirmed by changes of key molecules of the mitochondrial apoptotic pathway, p53 protein expression, Bax/Bcl-2 ratio and caspase-3 activation.


2020 ◽  
Vol 64 (5) ◽  
pp. 765-777 ◽  
Author(s):  
Yixi Xu ◽  
Dongyi Xu

Abstract Deoxyribonucleic acid (DNA) is at a constant risk of damage from endogenous substances, environmental radiation, and chemical stressors. DNA double-strand breaks (DSBs) pose a significant threat to genomic integrity and cell survival. There are two major pathways for DSB repair: nonhomologous end-joining (NHEJ) and homologous recombination (HR). The extent of DNA end resection, which determines the length of the 3′ single-stranded DNA (ssDNA) overhang, is the primary factor that determines whether repair is carried out via NHEJ or HR. NHEJ, which does not require a 3′ ssDNA tail, occurs throughout the cell cycle. 53BP1 and the cofactors PTIP or RIF1-shieldin protect the broken DNA end, inhibit long-range end resection and thus promote NHEJ. In contrast, HR mainly occurs during the S/G2 phase and requires DNA end processing to create a 3′ tail that can invade a homologous region, ensuring faithful gene repair. BRCA1 and the cofactors CtIP, EXO1, BLM/DNA2, and the MRE11–RAD50–NBS1 (MRN) complex promote DNA end resection and thus HR. DNA resection is influenced by the cell cycle, the chromatin environment, and the complexity of the DNA end break. Herein, we summarize the key factors involved in repair pathway selection for DSBs and discuss recent related publications.


Sign in / Sign up

Export Citation Format

Share Document