Faculty Opinions recommendation of ATM phosphorylates histone H2AX in response to DNA double-strand breaks.

Author(s):  
Stephen Jackson
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Israel Salguero ◽  
Rimma Belotserkovskaya ◽  
Julia Coates ◽  
Matylda Sczaniecka-Clift ◽  
Mukerrem Demir ◽  
...  

AbstractHistone H2AX and MDC1 are key DNA repair and DNA-damage signalling proteins. When DNA double-strand breaks (DSBs) occur, H2AX is phosphorylated and then recruits MDC1, which in turn serves as a docking platform to promote the localization of other factors, including 53BP1, to DSB sites. Here, by using CRISPR-Cas9 engineered human cell lines, we identify a hitherto unknown, H2AX-independent, function of MDC1 mediated by its PST-repeat region. We show that the PST-repeat region directly interacts with chromatin via the nucleosome acidic patch and mediates DNA damage-independent association of MDC1 with chromatin. We find that this region is largely functionally dispensable when the canonical γH2AX-MDC1 pathway is operative but becomes critical for 53BP1 recruitment to DNA-damage sites and cell survival following DSB induction when H2AX is not available. Consequently, our results suggest a role for MDC1 in activating the DDR in areas of the genome lacking or depleted of H2AX.


2005 ◽  
Vol 164 (4) ◽  
pp. 514-517 ◽  
Author(s):  
Francesca Antonelli ◽  
Mauro Belli ◽  
Giacomo Cuttone ◽  
Valentina Dini ◽  
Giuseppe Esposito ◽  
...  

2008 ◽  
Vol 29 (4) ◽  
pp. 1050-1058 ◽  
Author(s):  
Omar Zgheib ◽  
Kristopher Pataky ◽  
Juergen Brugger ◽  
Thanos D. Halazonetis

ABSTRACT 53BP1, the vertebrate ortholog of the budding yeast Rad9 and fission yeast Crb2/Rhp9 checkpoint proteins, is recruited rapidly to sites of DNA double-strand breaks (DSBs). A tandem tudor domain in human 53BP1 that recognizes methylated residues in the histone core is necessary, but not sufficient, for efficient recruitment. By analysis of deletion mutants, we identify here additional elements in 53BP1 that facilitate recognition of DNA DSBs. The first element corresponds to an independently folding oligomerization domain. Replacement of this domain with heterologous tetramerization domains preserves the ability of 53BP1 to recognize DNA DSBs. A second element is only about 15 amino acids long and appears to be a C-terminal extension of the tudor domain, rather than an independently functioning domain. Recruitment of 53BP1 to sites of DNA DSBs is facilitated by histone H2AX phosphorylation and ubiquitination. However, none of the 53BP1 domains/elements important for recruitment are known to bind phosphopeptides or ubiquitin, suggesting that histone phosphorylation and ubiquitination regulate 53BP1 recruitment to sites of DNA DSBs indirectly.


2001 ◽  
Vol 276 (45) ◽  
pp. 42462-42467 ◽  
Author(s):  
Sandeep Burma ◽  
Benjamin P. Chen ◽  
Michael Murphy ◽  
Akihiro Kurimasa ◽  
David J. Chen

Cell ◽  
2006 ◽  
Vol 124 (6) ◽  
pp. 1299 ◽  
Author(s):  
Manuel Stucki ◽  
Julie A. Clapperton ◽  
Duaa Mohammad ◽  
Michael B. Yaffe ◽  
Stephen J. Smerdon ◽  
...  

1999 ◽  
Vol 146 (5) ◽  
pp. 905-916 ◽  
Author(s):  
Emmy P. Rogakou ◽  
Chye Boon ◽  
Christophe Redon ◽  
William M. Bonner

The loss of chromosomal integrity from DNA double-strand breaks introduced into mammalian cells by ionizing radiation results in the specific phosphorylation of histone H2AX on serine residue 139, yielding a specific modified form named γ-H2AX. An antibody prepared to the unique region of human γ-H2AX shows that H2AX homologues are phosphorylated not only in irradiated mammalian cells but also in irradiated cells from other species, including Xenopus laevis, Drosophila melanogaster, and Saccharomyces cerevisiae. The antibody reveals that γ-H2AX appears as discrete nuclear foci within 1 min after exposure of cells to ionizing radiation. The numbers of these foci are comparable to the numbers of induced DNA double-strand breaks. When DNA double-strand breaks are introduced into specific partial nuclear volumes of cells by means of a pulsed microbeam laser, γ-H2AX foci form at these sites. In mitotic cells from cultures exposed to nonlethal amounts of ionizing radiation, γ-H2AX foci form band-like structures on chromosome arms and on the end of broken arms. These results offer direct visual confirmation that γ-H2AX forms en masse at chromosomal sites of DNA double-strand breaks. The results further suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.


Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3781-3791 ◽  
Author(s):  
Enrique M. Ocio ◽  
Patricia Maiso ◽  
Xi Chen ◽  
Mercedes Garayoa ◽  
Stela Álvarez-Fernández ◽  
...  

Abstract Multiple myeloma (MM) remains incurable, and new drugs with novel mechanisms of action are still needed. In this report, we have analyzed the action of Zalypsis, an alkaloid analogous to certain natural marine compounds, in MM. Zalypsis turned out to be the most potent antimyeloma agent we have tested so far, with IC50 values from picomolar to low nanomolar ranges. It also showed remarkable ex vivo potency in plasma cells from patients and in MM cells in vivo xenografted in mice. Besides the induction of apoptosis and cell cycle arrest, Zalypsis provoked DNA double-strand breaks (DSBs), evidenced by an increase in phospho-histone-H2AX and phospho-CHK2, followed by a striking overexpression of p53 in p53 wild-type cell lines. In addition, in those cell lines in which p53 was mutated, Zalypsis also provoked DSBs and induced cell death, although higher concentrations were required. Immunohistochemical studies in tumors also demonstrated histone-H2AX phosphorylation and p53 overexpression. Gene expression profile studies were concordant with these results, revealing an important deregulation of genes involved in DNA damage response. The potent in vitro and in vivo antimyeloma activity of Zalypsis uncovers the high sensitivity of tumor plasma cells to DSBs and strongly supports the use of this compound in MM patients.


Sign in / Sign up

Export Citation Format

Share Document