arthropods, Plants, and Transmission Lines in Arizona: Community Dynamics during Secondary Succession in a Pinyon-Juniper Woodland

1982 ◽  
Vol 27 (2) ◽  
pp. 167 ◽  
Author(s):  
T. M. Ditsworth ◽  
S. M. Butt ◽  
J. R. Beley ◽  
C. D. Johnson ◽  
R. P. Balda
2007 ◽  
Vol 23 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Janet Franklin ◽  
Sergio J. Rey

Spatial analysis can be used to relate the patterns of tree species to their regeneration syndromes – pioneer to late-successional – and is a first step in refining hypotheses about the species traits and biotic and abiotic factors that give rise to forest community dynamics. This study examines the spatial pattern of the most abundant trees in three 0.45-ha plots in species-poor lowland rain forests on oceanic islands in Tonga, Western Polynesia, that experience frequent natural disturbance and have a 3000-y history of shifting cultivation. We contrast secondary vs. remnant late-successional forest, with particular attention paid to the spatial dispersion and clustering of tree species, and the presence of spatial dependence in the density of seedlings and saplings. Shade-tolerant species were not strongly clustered at any scale. They did not appear to be dispersal limited, in late successional forest, and only some showed patterns consistent with density-dependent mortality (more clumped when small). Shade-tolerant species were more clumped in secondary forest, and may be dispersal-limited there because vertebrate dispersers prefer primary forest. Shade-intolerant species were clumped in gaps in late-successional forest, but some were also clumped in secondary forest, indicating that they too may be dispersal limited during secondary succession. We also compared the species composition of seedlings and saplings in the centre of plots with trees in the surrounding area and inferred that active dispersal (by vertebrate frugivores) contributed as much as 50% to site species richness.


2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


1993 ◽  
Vol 3 (3) ◽  
pp. 581-591 ◽  
Author(s):  
Wojciech Gwarek ◽  
Malgorzata Celuch-Marcysiak

Sign in / Sign up

Export Citation Format

Share Document