scholarly journals Agronomic and Acetylene Reduction Evaluation of Three Annual Medics

1983 ◽  
Vol 36 (1) ◽  
pp. 55 ◽  
Author(s):  
Mark A. Smith ◽  
Arden A. Baltensperger
1990 ◽  
Vol 17 (5) ◽  
pp. 489 ◽  
Author(s):  
Herdina ◽  
JH Silsbury

Methods of conducting acetylene reduction (AR) assay were appraised for estimating the nitrogenase activity of nodules of faba bean (Vicia faba L.). Factors considered were: (i) disturbance of plants when removing the rooting medium; (ii) assay temperature; (iii) the use of whole plants rather than detached, nodulated roots; (iv) diurnal variation in nodule activity; and (v) a decline in C2H4 production after exposure to C2H2. Plants growing in jars of 'oil dry' (calcined clay) had the same AR activity when assayed in situ in a closed system as when assayed after removal of the rooting medium. Assay temperatures of 12.5, 17.5 and 22.5°C influenced the specific rate of AR with the optimum at 17.5°C. Removal of the shoot resulted in a rapid decrease in AR activity in both vegetative and reproductive plants but the effect was much larger in the latter. AR and respiration by nodulated roots were closely linked and both varied markedly over a diurnal 12 h/12 h cycle. Since no fluctuation was found after nodules were detached, diurnal variation in the respiration of nodulated roots is attributed to change in nodule activity. Half of the dark respiration of nodulated roots was associated with respiration of the nodules and thus largely with N2 fixation. Since the AR assay provides no information on how electron flow in vivo is partitioned between reduction of N2 and reduction of protons, diurnal variation in hydrogen evolution (HE) in air and Ar/O2 in an open system was used to estimate this partitioning. Diurnal variation in apparent N2 fixation estimated in this manner was examined at a 'low' PPFD (300 μmol m-2 s-1) and at 'high' (1300 μmol m-2 s-1) to explore whether variation could be attributed to change in carbohydrate supply. Although HE in air and in Ar/O2 were both closely linked with the respiration of the nodulated root, apparent N2 fixation showed only a slight diurnal variation at 'low' light and almost none at 'high'. Vegetative plants showed no C2H2-induced decline in activity with exposure to C2H2 but reproductive plants did. This difference appears to be an age effect rather than attributable to flowering per se, since a decline occurred even when plants were kept vegetative by disbudding. A closed system for AR assay appears satisfactory for vegetative faba bean but such an assay over a 40-min period during the reproductive stage would underestimate nitrogenase activity by about 20%.


1992 ◽  
Vol 38 (6) ◽  
pp. 555-562 ◽  
Author(s):  
Vipin Rastogi ◽  
Monika Labes ◽  
Turlough Finan ◽  
Robert Watson

Symbiotic nitrogen fixation may be limited by the transport of C4 dicarboxylates into bacteroids in the nodule for use as a carbon and energy source. In an attempt to increase dicarboxylate transport, a plasmid was constructed in which the Rhizobium meliloti structural transport gene dctA was fused to a tryptophan operon promoter from Salmonella typhimurium, trpPO. This resulted in a functional dctA gene that was no longer under the control of the dctBD regulatory genes, but the recombinant plasmid was found to be unstable in R. meliloti. To stably integrate the trpPO-dctA fusion, it was recloned into pBR325 and recombined into the R. meliloti exo megaplasmid in the dctABD region. The resultant strain showed constitutive dctA-specific mRNA synthesis which was about 5-fold higher than that found in fully induced wild-type cells. Uptake assays showed that [14C]succinate transport by the trpPO-dctA fusion strain was constitutive, and the transport rate was the same as that of induced control cells. Acetylene reduction assays indicated a significantly higher rate of nitrogen fixation in plants inoculated with the trpPO-dctA fusion strain compared with the control. Despite this apparent increase, the plants had the same top dry weights as those inoculated with control cells. Key words: acetylene reduction, genetic engineering, nodule, plasmid stability, promoter.


1983 ◽  
Vol 61 (11) ◽  
pp. 2956-2963 ◽  
Author(s):  
U. Granhall ◽  
T. Ericsson ◽  
M. Clarholm

The effects of single large or repeated, exponentially increasing applications of nutrients, with or without inorganic nitrogen and at two pH levels, on the growth, nodulation, acetylene reduction, and nutrient uptake in Alnus incana (L.) Moench were investigated in pot experiments with peat under controlled laboratory conditions. The repeated application of inorganic nitrogen did not suppress nitrogenase activity until the last 2 weeks, whereas an initial, large, nitrogen application effectively inhibited nodulation and activity throughout the 40-day experimental period. The mode of nitrogen application was thus found to be more important than the total amounts applied. Shoot length, leaf area, shoot–root relations, dry-matter production, and nitrogen contents of plants were determined at the end of the experiment, as well as the effect of Frankia inoculations. Nitrogenase activity was determined three times, at 0, 3, and 5 weeks. N2 fixation (balance/acetylene reduction) was found to be maximal, 55% of total nitrogen uptake, in minus-N pots with single applications of essential nutrients. The fastest growth was, however, noted in pots with single applications of all nutrients, including N. Among the latter, pots inoculated with Frankia showed the best growth, in spite of low nitrogenase activity. The only noticeable effect of a raised pH level was a reduced endophyte activity in minus-N pots with single applications of essential nutrients, due to increased N mineralization in the peat.


1993 ◽  
Vol 33 (3) ◽  
pp. 299 ◽  
Author(s):  
GM Lodge

Plots sown in 1983 were used to examine the seed production and reserves (residual hardseeds) of 15 annual legumes over 5 years at Tamworth in northern New South Wales. Seed production characteristics were measured in 1983 for these annuals, and for 6 perennial legumes. After the annuals had set seed in 1983, an area of the plots was sprayed to prevent flowering in subsequent years, and the rates of decline in seed reserves were compared with those from areas that seeded annually. Seed yields of the perennials were often significantly lower than those of the annuals except Trifolium glomeratum. Seed yields of T. subterraneum var. subterraneum cvv. Seaton Park and Woogenellup were significantly higher than those of cv. Nungarin and T. subterrarzeum var. brachycalycinum cv. Clare. Seed numbers were lowest for Medicago scutellata cv. Sava among the annual medics, and for Nungarin among subterranean clovers. There was little relationship between the mean number of seeds produced from 1983-86 and maturity grading, and between seed numbers and relative dry matter yield. Seed reserves decreased over 5 years by more than 90% in the sprayed treatments of all species. This decrease was not continuous, with the largest declines occurring from December 1983 to August 1984. In the sprayed treatments of Seaton Park, Woogenellup, and Clare, and in both treatments of Astragalus hamosus cv. Ioman, Vicia dasycarpa var. villosa cv. Namoi, and T. hirtum cv. Hykon, none of the original 1983 seed was recovered in 1987. For the annual medics and Nungarin, the number of residual hardseeds in the sprayed treatments in 1987 was about 3-5% of the seed produced in 1983. From 1983 to 1987, seed numbers in the unsprayed treatments declined by 7040% for the annual medics and by 85-95% for Seaton Park, Woogenellup, and Clare. Long-term persistence of annual medics and Nungarin depended on seed production in most years and the maintenance of a high number of residual hardseeds in the soil. In contrast, the mid- and late-maturing subterranean clovers Woogenellup and Clare had low seed reserves and were dependent on seed production in most years for their continued regeneration.


2007 ◽  
Vol 64 (3) ◽  
pp. 303-304 ◽  
Author(s):  
Rafaela de Fátima Neroni ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia is an environmentally threatened tree and the whole biota of the Araucaria Forest should be investigated with the aim of its preservation. Diazotrophic bacteria are extremely important for the maintenance of ecosystems, but they have never been studied in Araucaria Forests. In this study, diazotrophic bacteria were isolated from Araucaria roots and soil, when grown in semi-specific, semi-solid media. The diazotrophic character of some recovered isolates could be confirmed using the acetylene reduction assay. According to their 16S rRNA sequences, most of these isolates belong to the genus Burkholderia.


Sign in / Sign up

Export Citation Format

Share Document