Recombinant DNA Molecules: The Challenge of a Revolutionary Technique

1976 ◽  
Vol 38 (3) ◽  
pp. 144-167 ◽  
Author(s):  
Richard Roblin
Genetics ◽  
1975 ◽  
Vol 81 (1) ◽  
pp. 33-50
Author(s):  
Raymond L White ◽  
Maurice S Fox

ABSTRACT Bacteriophage crosses using density-labeled parents have been carried out under conditions restricting DNA synthesis. The parental material and genetic contributions to progeny manifesting recombination within a genetic interval sufficiently short to exhibit high negative interference have been examined. The unreplicated products of recombination isolated as phage particles appear to contain long continuous heteroduplex regions which are heterozygous for the closely linked markers. Recombination between closely linked markers seems to be the consequence of the removal of base-pair mismatches that are present within the heteroduplex regions. This localized reduction of heterozygosity within the heteroduplex regions that join the parental components of recombinant DNA molecules can account for high negative interference.


1985 ◽  
Vol 5 (1) ◽  
pp. 59-69 ◽  
Author(s):  
K R Folger ◽  
K Thomas ◽  
M R Capecchi

We have examined the mechanism of homologous recombination between plasmid molecules coinjected into cultured mammalian cells. Cell lines containing recombinant DNA molecules were obtained by selecting for the reconstruction of a functional Neor gene from two plasmids that bear different amber mutations in the Neor gene. In addition, these plasmids contain restriction-length polymorphisms within and near the Neor gene. These polymorphisms did not confer a selectable phenotype but were used to identify and categorize selected and nonselected recombinant DNA molecules. The striking conclusion from this analysis is that the predominant mechanism for the exchange of information between coinjected plasmid molecules over short distances (i.e., less than 1 kilobase) proceeds via nonreciprocal homologous recombination. The frequency of homologous recombination between coinjected plasmid molecules in cultured mammalian cells is extremely high, approaching unity. We demonstrate that this high frequency requires neither a high input of plasmid molecules per cell nor a localized high concentration of plasmid DNA within the nucleus. Thus, it appears that plasmid molecules, once introduced into the nucleus, have no difficulty seeking each other out and participating in homologous recombination even in the presence of a vast excess of host DNA sequences. Finally, we show that most of the homologous recombination events occur within a 1-h interval after the introduction of plasmid DNA into the cell nucleus.


2015 ◽  
Vol 24 (02) ◽  
pp. 1550006 ◽  
Author(s):  
Dorothy Buck ◽  
Kai Ishihara

We categorize coherent band (aka nullification) pathways between knots and 2-component links. Additionally, we characterize the minimal coherent band pathways (with intermediates) between any two knots or 2-component links with small crossing number. We demonstrate these band surgeries for knots and links with small crossing number. We apply these results to place lower bounds on the minimum number of recombinant events separating DNA configurations, restrict the recombination pathways and determine chirality and/or orientation of the resulting recombinant DNA molecules.


Sign in / Sign up

Export Citation Format

Share Document