Causal Inference and Counterfactual Reasoning

2021 ◽  
pp. 105-128
Philosophies ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 52
Author(s):  
Paul Thagard

This paper naturalizes inductive inference by showing how scientific knowledge of real mechanisms provides large benefits to it. I show how knowledge about mechanisms contributes to generalization, inference to the best explanation, causal inference, and reasoning with probabilities. Generalization from some A are B to all A are B is more plausible when a mechanism connects A to B. Inference to the best explanation is strengthened when the explanations are mechanistic and when explanatory hypotheses are themselves mechanistically explained. Causal inference in medical explanation, counterfactual reasoning, and analogy also benefit from mechanistic connections. Mechanisms also help with problems concerning the interpretation, availability, and computation of probabilities.


Author(s):  
Bart Jacobs ◽  
Aleks Kissinger ◽  
Fabio Zanasi

Abstract Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endo-functor which performs ‘string diagram surgery’ within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on two well-known toy examples: one where we predict the causal effect of smoking on cancer in the presence of a confounding common cause and where we show that this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature; the other one is an illustration of counterfactual reasoning where the same interventional techniques are used, but now in a ‘twinned’ set-up, with two version of the world – one factual and one counterfactual – joined together via exogenous variables that capture the uncertainties at hand.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Emilia Gvozdenović ◽  
Lucio Malvisi ◽  
Elisa Cinconze ◽  
Stijn Vansteelandt ◽  
Phoebe Nakanwagi ◽  
...  

Abstract Background Randomized controlled trials are considered the gold standard to evaluate causal associations, whereas assessing causality in observational studies is challenging. Methods We applied Hill’s Criteria, counterfactual reasoning, and causal diagrams to evaluate a potentially causal relationship between an exposure and outcome in three published observational studies: a) one burden of disease cohort study to determine the association between type 2 diabetes and herpes zoster, b) one post-authorization safety cohort study to assess the effect of AS04-HPV-16/18 vaccine on the risk of autoimmune diseases, and c) one matched case-control study to evaluate the effectiveness of a rotavirus vaccine in preventing hospitalization for rotavirus gastroenteritis. Results Among the 9 Hill’s criteria, 8 (Strength, Consistency, Specificity, Temporality, Plausibility, Coherence, Analogy, Experiment) were considered as met for study c, 3 (Temporality, Plausibility, Coherence) for study a, and 2 (Temporary, Plausibility) for study b. For counterfactual reasoning criteria, exchangeability, the most critical assumption, could not be tested. Using these tools, we concluded that causality was very unlikely in study b, unlikely in study a, and very likely in study c. Directed acyclic graphs provided complementary visual structures that identified confounding bias and helped determine the most accurate design and analysis to assess causality. Conclusions Based on our assessment we found causal Hill’s criteria and counterfactual thinking valuable in determining some level of certainty about causality in observational studies. Application of causal inference frameworks should be considered in designing and interpreting observational studies.


2020 ◽  
Author(s):  
Fabian Dablander

Causal inference goes beyond prediction by modeling the outcome of interventions and formalizing counterfactual reasoning. Instead of restricting causal conclusions to experiments, causal inference explicates the conditions under which it is possible to draw causal conclusions even from observational data. In this paper, I provide a concise introduction to the graphical approach to causal inference, which uses Directed Acyclic Graphs (DAGs) to visualize, and Structural Causal Models (SCMs) to relate probabilistic and causal relationships. Successively, we climb what Judea Pearl calls the "causal hierarchy" --- moving from association to intervention to counterfactuals. I explain how DAGs can help us reason about associations between variables as well as interventions; how the do-calculus leads to a satisfactory definition of confounding, thereby clarifying, among other things, Simpson's paradox; and how SCMs enable us to reason about what could have been. Lastly, I discuss a number of challenges in applying causal inference in practice.


2019 ◽  
Vol 42 ◽  
Author(s):  
Roberto A. Gulli

Abstract The long-enduring coding metaphor is deemed problematic because it imbues correlational evidence with causal power. In neuroscience, most research is correlational or conditionally correlational; this research, in aggregate, informs causal inference. Rather than prescribing semantics used in correlational studies, it would be useful for neuroscientists to focus on a constructive syntax to guide principled causal inference.


2013 ◽  
Author(s):  
John F. Magnotti ◽  
Wei Ji Ma ◽  
Michael S. Beauchamp

Sign in / Sign up

Export Citation Format

Share Document