Mathematical Structures and Symmetry:

2018 ◽  
pp. 17-23
Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Stefan Heusler ◽  
Paul Schlummer ◽  
Malte S. Ubben

What is the origin of quantum randomness? Why does the deterministic, unitary time development in Hilbert space (the ‘4π-realm’) lead to a probabilistic behaviour of observables in space-time (the ‘2π-realm’)? We propose a simple topological model for quantum randomness. Following Kauffmann, we elaborate the mathematical structures that follow from a distinction(A,B) using group theory and topology. Crucially, the 2:1-mapping from SL(2,C) to the Lorentz group SO(3,1) turns out to be responsible for the stochastic nature of observables in quantum physics, as this 2:1-mapping breaks down during interactions. Entanglement leads to a change of topology, such that a distinction between A and B becomes impossible. In this sense, entanglement is the counterpart of a distinction (A,B). While the mathematical formalism involved in our argument based on virtual Dehn twists and torus splitting is non-trivial, the resulting haptic model is so simple that we think it might be suitable for undergraduate courses and maybe even for High school classes.


2021 ◽  
pp. 1-12
Author(s):  
Nabilah Abughazalah ◽  
Majid Khan ◽  
Noor Munir ◽  
Amna Zafar

In this article, we have designed a new scheme for the construction of the nonlinear confusion component. Our mechanism uses the notion of a semigroup, Inverse LA-semigroup, and various other loops. With the help of these mathematical structures, we can easily build our confusion component namely substitution boxes (S-boxes) without having specialized structures. We authenticate our proposed methodology by incorporating the available cryptographic benchmarks. Moreover, we have utilized the technique for order of preference by similarity to ideal solution (TOPSIS) to select the best nonlinear confusion component. With the aid of this multi-criteria decision-making (MCDM), one can easily select the best possible confusion component while selecting among various available nonlinear confusion components.


2011 ◽  
Vol 21 (4) ◽  
pp. 671-677 ◽  
Author(s):  
GÉRARD HUET

This special issue of Mathematical Structures in Computer Science is devoted to the theme of ‘Interactive theorem proving and the formalisation of mathematics’.The formalisation of mathematics started at the turn of the 20th century when mathematical logic emerged from the work of Frege and his contemporaries with the invention of the formal notation for mathematical statements called predicate calculus. This notation allowed the formulation of abstract general statements over possibly infinite domains in a uniform way, and thus went well beyond propositional calculus, which goes back to Aristotle and only allowed tautologies over unquantified statements.


2006 ◽  
Vol 13 (04) ◽  
pp. 415-426 ◽  
Author(s):  
P. Aniello ◽  
C. Lupo ◽  
M. Napolitano

In this paper, we investigate some mathematical structures underlying the physics of linear optical passive (LOP) devices. We show, in particular, that with the class of LOP transformations on N optical modes one can associate a unitary representation of U (N) in the N-mode Fock space, representation which can be decomposed into irreducible sub-representations living in the subspaces characterized by a fixed number of photons. These (sub-)representations can be classified using the theory of representations of semi-simple Lie algebras. The remarkable case where N = 3 is studied in detail.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Eman Almuhur ◽  
Manal Al-Labadi ◽  
Amani Shatarah ◽  
Nazneen Khan ◽  
Raeesa Bashir

Purpose This study aims to focus on electronic applications that have an effective role in raising the awareness of the dangers of viruses’ transmission from person-to-person and their positive and important impact on people’s lives. Design/methodology/approach The authors illustrated the effects of socializing with infected people on a human body by a model in geometry and how the prospected antibiotic annihilates the structure of the virus. The authors discussed vital operations inside the human body to expound the geometry of objects that are closed under their operations, such as viruses, especially Coronaviridae. Findings Also, the authors discussed some of the e-health applications in Jordan. As e-health activities, programs and applications have been given attention, the authors focused on potentials for constructing strategies that lead to create a featuring health technology. Originality/value Moreover, in this study, the authors explored the structure and geometry of Coronaviridae family, especially coronavirus that causes lots of diseases, and explained its movement mechanism using the mathematical structures.


2018 ◽  
Vol 106 (03) ◽  
pp. 342-360 ◽  
Author(s):  
G. CHIASELOTTI ◽  
T. GENTILE ◽  
F. INFUSINO

In this paper, we introduce asymmetry geometryfor all those mathematical structures which can be characterized by means of a generalization (which we call pairing) of a finite rectangular table. In more detail, let$\unicode[STIX]{x1D6FA}$be a given set. Apairing$\mathfrak{P}$on$\unicode[STIX]{x1D6FA}$is a triple$\mathfrak{P}:=(U,F,\unicode[STIX]{x1D6EC})$, where$U$and$\unicode[STIX]{x1D6EC}$are nonempty sets and$F:U\times \unicode[STIX]{x1D6FA}\rightarrow \unicode[STIX]{x1D6EC}$is a map having domain$U\times \unicode[STIX]{x1D6FA}$and codomain$\unicode[STIX]{x1D6EC}$. Through this notion, we introduce a local symmetry relation on$U$and a global symmetry relation on the power set${\mathcal{P}}(\unicode[STIX]{x1D6FA})$. Based on these two relations, we establish the basic properties of our symmetry geometry induced by$\mathfrak{P}$. The basic tool of our study is a closure operator$M_{\mathfrak{P}}$, by means of which (in the finite case) we can represent any closure operator. We relate the study of such a closure operator to several types of others set operators and set systems which refine the notion of an abstract simplicial complex.


Sign in / Sign up

Export Citation Format

Share Document