Performance Evaluation of Transform based Feature Extraction Methods for Identity Authentication System using Fingerprint Matching

Author(s):  
Shreyansh Daftry ◽  
Saloni Dawar
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xinman Zhang ◽  
Kunlei Jing ◽  
Guokun Song

The security problems of online transactions by smartphones reveal extreme demand for reliable identity authentication systems. With a lower risk of forgery, richer texture, and more comfortable acquisition mode, compared with face, fingerprint, and iris, palmprint is rarely adopted for identity authentication. In this paper, we develop an effective and full-function palmprint authentication system regarding the application on an Android smartphone, which bridges the algorithmic study and application of palmprint authentication. In more detail, an overall system framework is designed with complete functions, including palmprint acquisition, key points location, ROI segmentation, feature extraction, and feature coding. Basically, we develop a palmprint authentication system having user-friendly interfaces and good compatibility with the Android smartphone. Particularly, on the one hand, to guarantee the effectiveness and efficiency of the system, we exploit the practical Log-Gabor filter for feature extraction and discuss the impact of filtering direction, downsampling ratio, and discriminative feature coding to propose an improved algorithm. On the other hand, after exploring the hardware components of the smartphone and the technical development of the Android system, we provide an open technology to extend the biometric methods to real-world applications. On the public PolyU databases, simulation results suggest that the improved algorithm outperforms the original one with a promising accuracy of 100% and a good speed of 0.041 seconds. In real-world authentication, the developed system achieves an accuracy of 98.40% and a speed of 0.051 seconds. All the results verify the accuracy and timeliness of the developed system.


2020 ◽  
Author(s):  
Vricha Chavan ◽  
​Jimit Shah ◽  
Mrugank Vora ◽  
Mrudula Vora ◽  
Shubhashini Verma

2021 ◽  
Vol 7 (5) ◽  
pp. 89
Author(s):  
George K. Sidiropoulos ◽  
Polixeni Kiratsa ◽  
Petros Chatzipetrou ◽  
George A. Papakostas

This paper aims to provide a brief review of the feature extraction methods applied for finger vein recognition. The presented study is designed in a systematic way in order to bring light to the scientific interest for biometric systems based on finger vein biometric features. The analysis spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms are clustered into five categories and are presented in a qualitative manner by focusing mainly on the techniques applied to represent the features of the finger veins that uniquely prove a human’s identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also examined. The conducted literature analysis revealed the increased interest in finger vein biometric systems as well as the high diversity of different feature extraction methods proposed over the past several years. However, last year this interest shifted to the application of Convolutional Neural Networks following the general trend of applying deep learning models in a range of disciplines. Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods and describes the research actions needed to face the identified challenges.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


2021 ◽  
Vol 1804 (1) ◽  
pp. 012144
Author(s):  
Hesham Hashim Mohammed ◽  
Shatha A. Baker ◽  
Ahmed S. Nori

Sign in / Sign up

Export Citation Format

Share Document