SNP Barcode for Breast Cancer Prediction using Catfish Particle Swarm Optimization

Author(s):  
Cheng-Huei Yang ◽  
Yu-Da Lin ◽  
Li-Yeh Chuang ◽  
Cheng-Hong Yang
2020 ◽  
Vol 16 (11) ◽  
pp. 155014772097150
Author(s):  
Vijayalakshmi S ◽  
John A ◽  
Sunder R ◽  
Senthilkumar Mohan ◽  
Sweta Bhattacharya ◽  
...  

Cancer is enlisted as the second leading reason for death across the world wherein almost one person out of six dies of cancer. Breast cancer is one of the most common forms of cancer predominant in women having the second highest mortality rate in the world. Various scientific studies have been conducted to combat this disease, and machine learning approaches have been an extremely popular choice. Particle swarm optimization has been identified as one of the most powerful and efficient technique for the diagnosis of breast cancer guiding physicians towards timely and accurate treatment. It is also pertinent to mention that multi-modal prediction methods are used to make decisions depending upon different scenarios and aspects whereas the non-dominating sorting feature is useful to sort different objects based on differing requirements. The main novelty of this work is multi-modal prediction algorithm for breast cancer prediction is proposed. The work encompasses the use of particle swarm optimization, non-dominating sorting and multi-classifier techniques, namely, k-nearest neighbour method, fast decision tree and kernel density estimation. Finally, Bayes’ theorem is implemented for revising the results to achieve optimum accuracy in the breast cancer prediction. The proposed particle swarm optimization and non-domination sorting with classifier technique model helps to select the most significant features relevant to breast cancer predictions. The selected features design the objective of the problem model. The proposed model is implemented on the WBCD and WDBC breast cancer data sets publicly available from the UCI machine learning data repository. The metrics considered are sensitivity, specificity, accuracy and time complexity. The experimental results of the study using measures such as sensitivity, specificity, accuracy and time complexity. The experimental results of the study are evaluated against the state-of-the-art algorithms, namely, genetic algorithm kernel density estimation and particle swarm optimization kernel density estimation wherein the results justify the superiority of the proposed model.


2019 ◽  
Vol 3 (3) ◽  
pp. 458-469
Author(s):  
Azminuddin I. S. Azis ◽  
Irma Surya Kumala Idris ◽  
Budy Santoso ◽  
Yasin Aril Mustofa

Breast Cancer is the most common cancer found in women and the death rate is still in second place among other cancers. The high accuracy of the machine learning approach that has been proposed by related studies is often achieved. However, without efficient pre-processing, the model of Breast Cancer prediction that was proposed is still in question. Therefore, this research objective to improve the accuracy of machine learning methods through pre-processing: Missing Value Replacement, Data Transformation, Smoothing Noisy Data, Feature Selection / Attribute Weighting, Data Validation, and Unbalanced Class Reduction which is more efficient for Breast Cancer prediction. The results of this study propose several approaches: C4.5 - Z-Score - Genetic Algorithm for Breast Cancer Dataset with 77,27% accuracy, 7-Nearest Neighbor - Min-Max Normalization - Particle Swarm Optimization for Wisconsin Breast Cancer Dataset - Original with 97,85% accuracy, Artificial Neural Network - Z-Score - Forward Selection for Wisconsin Breast Cancer Dataset - Diagnostics with 98,24% accuracy, and 11-Nearest Neighbor - Min-Max Normalization - Particle Swarm Optimization for Wisconsin Breast Cancer Dataset - Prognostic with 83,33% accuracy. The performance of these approaches is better than standard/normal machine learning methods and the proposed methods by the best of previous related studies.  


Sign in / Sign up

Export Citation Format

Share Document