2021 ◽  
Vol 27 (4) ◽  
pp. 455-470
Author(s):  
Cory S. Wallace ◽  
Paul M. Santi

ABSTRACT Landslide runout has traditionally been quantified by the height-to-length ratio, H/L, which, in many cases, is strongly influenced by the slope of the runout path. In this study, we propose an alternative mobility measure, the unitless Runout Number, measured as the landslide length divided by the square root of the landslide area, which characterizes landslide shape in terms of elongation. We used a database of 158 landslides of varying runout distances from locations in northern California, Oregon, and Washington state to compare the two runout measurement methods and explore their predictability using parameters that can be measured or estimated using geographic information systems. The Runout Number better describes the overall runout for several landslide and slope geometries. The two mobility measures show very little correlation to each other, indicating that the two parameters describe different landslide mobility mechanisms. When compared to predictive parameters shown by prior research to relate to landslide runout, the two runout measurement methods show different correlations. H/L correlates more strongly to initial slope angle, upslope contributing area, landslide area, and grain size distribution (percent clay, silt, total fines, and sand). The Runout Number correlates more strongly to planimetric curvature, upslope contributing area normalized by landslide area, and percent sand. Although these correlations are not necessarily strong enough for prediction, they indicate the validity of both runout measurement methods and the benefit of including both numbers when characterizing landslide mobility.


Author(s):  
Oldřich Krejčí ◽  
Vladimíra Krejčí ◽  
Petr Kycl ◽  
Martin Paleček ◽  
Jan Rybář

2021 ◽  
Vol 9 (6) ◽  
pp. 639
Author(s):  
Hong Zhang ◽  
Xiaolei Liu ◽  
Anduo Chen ◽  
Weijia Li ◽  
Yang Lu ◽  
...  

Liquefied submarine sediments can easily lead to submarine landslides and turbidity currents, and cause serious damage to offshore engineering facilities. Understanding the rheological characteristics of liquefied sediments is critical for improving our knowledge of the prevention of submarine geo-hazards and the evolution of submarine topography. In this study, an in situ test device was developed to measure the rheological properties of liquefied sediments. The test principle is the shear column theory. The device was tested in the subaqueous Yellow River delta, and the test results indicated that liquefied sediments can be regarded as “non-Newtonian fluids with shear thinning characteristics”. Furthermore, a laboratory rheological test was conducted as a contrast experiment to qualitatively verify the accuracy of the in situ test data. Through the comparison of experiments, it was proved that the use of the in situ device in this paper is suitable and reliable for the measurement of the rheological characteristics of liquefied submarine sediments. Considering the fact that liquefaction may occur in deeper water (>5 m), a work pattern for the device in the offshore area is given. This novel device provides a new way to test the undrained shear strength of liquefied sediments in submarine engineering.


Science ◽  
1929 ◽  
Vol 70 (1822) ◽  
pp. x-x
Keyword(s):  

Author(s):  
Gayaz S. Khakimzyanov ◽  
Oleg I. Gusev ◽  
Sofya A. Beizel ◽  
Leonid B. Chubarov ◽  
Nina Yu. Shokina

AbstractNumerical technique for studying surface waves appearing under the motion of a submarine landslide is discussed. This technique is based on the application of the model of a quasi-deformable landslide and two shallow water models, namely, the classic (dispersion free) one and the completely nonlinear dispersive model of the second hydrodynamic approximation. Numerical simulation of surface waves generated by a large model landslide on the continental slope of the Black Sea near the Russian coast is performed. It is shown that the dispersion has a significant impact on the picture of propagation of tsunami waves on sufficiently long paths.


2017 ◽  
Vol 68 (5) ◽  
pp. 403-418 ◽  
Author(s):  
Ján Soták ◽  
Zuzana Pulišová ◽  
Dušan Plašienka ◽  
Viera Šimonová

Abstract The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4), early Ypresian (Zones P5 - E2) and late Ypresian to early Lutetian (Zones E5 - E9) age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites). The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE), which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW). Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.


Sign in / Sign up

Export Citation Format

Share Document