landslide mobility
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiva P. Pudasaini ◽  
Michael Krautblatter

AbstractErosion can significantly increase the destructive power of a landslide by amplifying its volume, mobility and impact force. The threat posed by an erosive landslide is linked to its mobility. No mechanical condition has yet been presented for when, how and how much energy erosive landslides gain or lose. Here, we pioneer a mechanical model for the energy budget of erosive landslides that controls enhanced or reduced mobility. Inertia is related to an entrainment velocity, is a fundamentally new understanding. This ascertains the true inertia of erosive landslides, making a breakthrough in correctly determining the landslide mobility. Erosion velocity, which regulates the energy budget, determines the enhanced or reduced mobility. Newly developed energy generator offers the first-ever mechanical quantification of erosional energy and a precise description of mobility. This addresses the long-standing question of why many erosive landslides generate higher mobility, while others reduce mobility. We demonstrate that erosion and entrainment are different processes. Landslides gain energy and enhance mobility if the erosion velocity exceeds the entrainment velocity. Energy velocity delineates distinct excess energy regimes. Newly introduced mobility scaling and erosion number deliver the explicit measure of mobility. Presented dynamical equations correctly include erosion induced net momentum production.


2021 ◽  
Vol 27 (4) ◽  
pp. 455-470
Author(s):  
Cory S. Wallace ◽  
Paul M. Santi

ABSTRACT Landslide runout has traditionally been quantified by the height-to-length ratio, H/L, which, in many cases, is strongly influenced by the slope of the runout path. In this study, we propose an alternative mobility measure, the unitless Runout Number, measured as the landslide length divided by the square root of the landslide area, which characterizes landslide shape in terms of elongation. We used a database of 158 landslides of varying runout distances from locations in northern California, Oregon, and Washington state to compare the two runout measurement methods and explore their predictability using parameters that can be measured or estimated using geographic information systems. The Runout Number better describes the overall runout for several landslide and slope geometries. The two mobility measures show very little correlation to each other, indicating that the two parameters describe different landslide mobility mechanisms. When compared to predictive parameters shown by prior research to relate to landslide runout, the two runout measurement methods show different correlations. H/L correlates more strongly to initial slope angle, upslope contributing area, landslide area, and grain size distribution (percent clay, silt, total fines, and sand). The Runout Number correlates more strongly to planimetric curvature, upslope contributing area normalized by landslide area, and percent sand. Although these correlations are not necessarily strong enough for prediction, they indicate the validity of both runout measurement methods and the benefit of including both numbers when characterizing landslide mobility.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2030
Author(s):  
Antonello Troncone ◽  
Luigi Pugliese ◽  
Andrea Parise ◽  
Enrico Conte

In the present study, the landslides cyclically reactivated by water-table oscillations due to rainfall are dealt with. The principal kind of motion that usually characterizes such landslides is a slide with rather small velocity. As another feature, soil deformations are substantially accumulated inside a narrow shear zone situated below the landslide body so that the latter approximately slides rigidly. Within this framework, a new approach is developed in this paper to predict the mobility of this type of landslides due to rainfall. To this end, a two-wedges model is used to schematize the moving soil mass. Some analytical solutions are derived to link rain recordings with water-table fluctuations and in turn to landslide displacements. A well-documented landslide frequently activated by rainfall is studied to check the forecasting capacity of the proposed method.


2021 ◽  
Author(s):  
Shiva P. Pudasaini ◽  
Michael Krautblatter

<p>Erosion can dramatically change the dynamics and deposition morphology and escalate the destructive power of a landslide by rapidly amplifying its volume, turning it into a catastrophic event. Mobility is the direct measure of the thread posed by an erosive landslide as it plays a dominant role in controlling the enormous impact energy. However, no clear-cut mechanical condition has been presented so far for when and how the erosive landslide gains or loses energy resulting in enhanced or reduced mobility. We pioneer a mechanical model for the energy budget of an erosive landslide that delineates the enhanced or reduced mobility. A fundamentally new understanding is that the increased inertia due to the increased mass is not related to the landslide velocity, but it is associated with the distinctly different entrainment velocity emerging from the inertial frame of reference. The true inertia can be much less than incorrectly proposed previously. We eliminate the existing erroneous perception and make a breakthrough in correctly determining the mobility of the erosive landslide. We reveal that the erosion velocity plays an outstanding role in appropriately determining the energy budget of the erosive landslide. Crucially, whether the erosion related mass flow mobility will be enhanced, reduced or remains unaltered depends exclusively on whether the newly constructed energy generator is positive, negative or zero. This provides a first-ever explicit mechanical quantification of the state of energy, and thus, the precise description of mobility. This becomes a game-changer and fully addresses the long-standing scientific question of why and when some erosive landslides have higher mobility, while others have their mobility reduced. By introducing three important novel mechanical concepts: erosion-velocity, entrainment-velocity and energy-velocity, we demonstrate that the erosion and entrainment are essentially different processes. With this, we draw a central inference: that the landslide gains energy and enhances its mobility if the erosion velocity is greater than the entrainment velocity. The energy velocity delineates the three excess energy regimes: positive, negative and zero. We establish a mechanism of landslide-propulsion that emerges from the net momentum production, providing the erosion-thrust to the landslide. Analytically obtained velocity quantifies the effect of erosion in landslide mobility and indicates the fact that erosion can have the major control on the landslide dynamics. We have also presented a full set of dynamical equations in conservative form in which the momentum balance correctly includes the erosion induced change in inertia and the momentum production. This is a great advancement in legitimate simulation of landslide motion with erosion.</p>


2020 ◽  
Vol 47 (11) ◽  
Author(s):  
Yu Deng ◽  
Shuaixing Yan ◽  
Gianvito Scaringi ◽  
Wei Liu ◽  
Siming He

2020 ◽  
Author(s):  
Mark Reid ◽  
Brian Collins

<p>Enhanced landslide mobility can project devastation across extensive areas, greatly affecting hazard and risk. Despite this importance, assessing potential mobility can be challenging as underlying causes of enhanced mobility vary. Liquefaction can dramatically decrease shear resistance and promote mobility, and pervasive liquefaction is well known to boost the mobility of debris flows and other flow slides. However, liquefaction’s potential effect on more coherent slide masses can be difficult to identify in the field. The 2014 Oso, Washington (USA) debris avalanche provides an exceptional opportunity to understand specific causes of liquefaction and enhanced mobility. The slide was more mobile than typical debris avalanches, sweeping over 1 km across a flat alluvial plain to the opposite side of the river valley and killing 43 people as it travelled. Following the 2014 event, we performed detailed investigations aimed at illuminating the event sequence and the mechanisms promoting mobility, with a strong focus on the role of liquefaction.</p><p>The landslide initiated in stratified glacial materials and created a variety of landslide deposit types, including a widespread debris-avalanche hummock field covering much of the formerly flat river valley. Our field investigations revealed clear and widespread evidence for sub-bottom (basal) liquefaction as the cause for the slide’s long reach. Soon after the slide event, we mapped more than 350 sand boils – classic indicators of liquefaction – as both isolated vents and groups of multiple vents within the hummock field. We found sand boils in the depressions between hummocks; the hummocks themselves were not liquefied and commonly contained rafted materials such as intact pieces of glacial stratigraphy and forest floor on their surfaces. The sand boils erupted through a variety of glacial sediments, including lacustrine clays. Sand boil grain-size characteristics most closely matched the underlying alluvial sands, rather than the overriding glacial sediments. Evidence of sand boils was transient; most features were eroded from the landscape within a year.</p><p>Liquefaction can be induced by several mechanisms, including rapid loading, shearing of loose contractive sediment, and cyclical loading during ground shaking. Given these plausible mechanisms, we used a fully coupled fluid-sediment elastic deformation analysis, as well as triaxial geotechnical testing of the alluvium, to assess potential liquefaction of the materials overrun by the Oso slide. Our results demonstrate that the large failure rapidly loading loose, already wet alluvial sediments likely resulted in their liquefaction. The greatly reduced shear strength of the liquefied alluvium enabled enhanced mobility of the overriding landslide mass on a liquefied base. This process differs from liquefaction of the slide material itself and is therefore not directly dependent on slide-mass properties. Liquefaction of underlying sediments, similar to that observed at Oso, may have enhanced the mobility of other large, coherent landslides in Europe and Asia.</p>


Landslides ◽  
2019 ◽  
Vol 16 (12) ◽  
pp. 2421-2431 ◽  
Author(s):  
H. Y. Luo ◽  
P. Shen ◽  
L. M. Zhang
Keyword(s):  

2019 ◽  
Vol 132 (3-4) ◽  
pp. 451-476 ◽  
Author(s):  
Brian D. Collins ◽  
Mark E. Reid

AbstractLandslide mobility can vastly amplify the consequences of slope failure. As a compelling example, the 22 March 2014 landslide near Oso, Washington (USA), was particularly devastating, traveling across a 1-km+-wide river valley, killing 43 people, destroying dozens of homes, and temporarily closing a well-traveled highway. To resolve causes for the landslide’s behavior and mobility, we conducted detailed postevent field investigations and material testing. Geologic and structure mapping revealed a progression of geomorphological structures ranging from debris-flow lobes at the distal end through hummock fields, laterally continuous landslide blocks, back-rotated blocks, and finally colluvial slides and falls at the landslide headscarp. Primary structures, as well as stratigraphic and vegetation patterns, in the landslide deposit indicated rapid extensional motion of the approximately 9 × 106 m3 source volume in a closely timed sequence of events. We identified hundreds of transient sand boils in the landslide runout zone, representing evidence of widespread elevated pore-water pressures with consequent shear-strength reduction at the base of the slide. During the event, underlying wet alluvium liquefied and allowed quasi-intact slide hummocks to extend and translate long distances across the flat valley. Most of the slide material itself did not liquefy. Using geotechnical testing and numerical modeling, we examined rapid undrained loading, shear and collapse of loose saturated alluvium, and strong ground shaking as potential liquefaction mechanisms. Our analyses show that some layers in the alluvium can liquefy when sheared, as could occur with rapid undrained loading. Simultaneous ground shaking could have contributed to pore-pressure generation as well. Two key elements, a large and rapid failure overriding wet liquefiable sediments, enabled the landslide’s high mobility. Basal liquefaction may enhance mobility of other landslides in similar settings.


2018 ◽  
Vol 18 (12) ◽  
pp. 3343-3353 ◽  
Author(s):  
Miao Yu ◽  
Yu Huang ◽  
Wenbin Deng ◽  
Hualin Cheng

Abstract. Flow-like landslides, such as flow slides and debris avalanches, have caused serious infrastructure damage and casualties for centuries. Effective numerical simulation incorporating accurate soil mechanical parameters is essential for predicting post-failure landslide mobility. In this study, smoothed particle hydrodynamics (SPH) incorporating soil ring shear test results were used to forecast the long-runout mobility for a landslide on an unstable slope in China. First, a series of ring shear tests under different axial stresses and shear velocities were conducted to evaluate the residual shear strength of slip zones after extensive shear deformation. Based on the ring shear test results, SPH modeling was conducted to predict the post-failure mobility of a previously identified unstable slope. The results indicate that the landslide would cut a fire service road on the slope after 12 s and cover an expressway at the foot of that slope after 36 s. In the model, the landslide would finally stop sliding about 38 m beyond the foot of the slope after 200 s. This study extends the application of the SPH model from disaster simulations to predictive analysis of unstable landslide. In addition, two sets of comparative calculations were carried out which demonstrate the robustness of the SPH method.


Géotechnique ◽  
2018 ◽  
Vol 68 (6) ◽  
pp. 528-545 ◽  
Author(s):  
N. M. Pinyol ◽  
M. Alvarado ◽  
E. E. Alonso ◽  
F. Zabala

Sign in / Sign up

Export Citation Format

Share Document