Bringing Automated Spatio-Temporal Decision Making to 3rd Generation Surveillance Systems

Author(s):  
Janne Merilinna ◽  
Mikko Nieminen ◽  
Elisabeth Wetzinger
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Elizabeth Hyde ◽  
Matthew H. Bonds ◽  
Felana A. Ihantamalala ◽  
Ann C. Miller ◽  
Laura F. Cordier ◽  
...  

Abstract Background Reliable surveillance systems are essential for identifying disease outbreaks and allocating resources to ensure universal access to diagnostics and treatment for endemic diseases. Yet, most countries with high disease burdens rely entirely on facility-based passive surveillance systems, which miss the vast majority of cases in rural settings with low access to health care. This is especially true for malaria, for which the World Health Organization estimates that routine surveillance detects only 14% of global cases. The goal of this study was to develop a novel method to obtain accurate estimates of disease spatio-temporal incidence at very local scales from routine passive surveillance, less biased by populations' financial and geographic access to care. Methods We use a geographically explicit dataset with residences of the 73,022 malaria cases confirmed at health centers in the Ifanadiana District in Madagascar from 2014 to 2017. Malaria incidence was adjusted to account for underreporting due to stock-outs of rapid diagnostic tests and variable access to healthcare. A benchmark multiplier was combined with a health care utilization index obtained from statistical models of non-malaria patients. Variations to the multiplier and several strategies for pooling neighboring communities together were explored to allow for fine-tuning of the final estimates. Separate analyses were carried out for individuals of all ages and for children under five. Cross-validation criteria were developed based on overall incidence, trends in financial and geographical access to health care, and consistency with geographic distribution in a district-representative cohort. The most plausible sets of estimates were then identified based on these criteria. Results Passive surveillance was estimated to have missed about 4 in every 5 malaria cases among all individuals and 2 out of every 3 cases among children under five. Adjusted malaria estimates were less biased by differences in populations’ financial and geographic access to care. Average adjusted monthly malaria incidence was nearly four times higher during the high transmission season than during the low transmission season. By gathering patient-level data and removing systematic biases in the dataset, the spatial resolution of passive malaria surveillance was improved over ten-fold. Geographic distribution in the adjusted dataset revealed high transmission clusters in low elevation areas in the northeast and southeast of the district that were stable across seasons and transmission years. Conclusions Understanding local disease dynamics from routine passive surveillance data can be a key step towards achieving universal access to diagnostics and treatment. Methods presented here could be scaled-up thanks to the increasing availability of e-health disease surveillance platforms for malaria and other diseases across the developing world.


2021 ◽  
Author(s):  
Vishal Ahuja ◽  
Carlos A. Alvarez ◽  
John R. Birge ◽  
Chad Syverson

The U.S. Food and Drug Administration (FDA) regulates the approval and safe public use of pharmaceutical products in the United States. The FDA uses postmarket surveillance systems to monitor drugs already on the market; a drug found to be associated with an increased risk of adverse events (ADEs) is subject to a recall or a warning. A flawed postmarket decision-making process can have unintended consequences for patients, create uncertainty among providers and affect their prescribing practices, and subject the FDA to unfavorable public scrutiny. The FDA’s current pharmacovigilance process suffers from several shortcomings (e.g., a high underreporting rate), often resulting in incorrect or untimely decisions. Thus, there is a need for robust, data-driven approaches to support and enhance regulatory decision making in the context of postmarket pharmacovigilance. We propose such an approach that has several appealing features—it employs large, reliable, and relevant longitudinal databases; it uses methods firmly established in literature; and it addresses selection bias and endogeneity concerns. Our approach can be used to both (i) independently validate existing safety concerns relating to a drug, such as those emanating from existing surveillance systems, and (ii) perform a holistic safety assessment by evaluating a drug’s association with other ADEs to which the users may be susceptible. We illustrate the utility of our approach by applying it retrospectively to a highly publicized FDA black box warning (BBW) for rosiglitazone, a diabetes drug. Using comprehensive data from the Veterans Health Administration on more than 320,000 diabetes patients over an eight-year period, we find that the drug was not associated with the two ADEs that led to the BBW, a conclusion that the FDA evidently reached, as it retracted the warning six years after issuing it. We demonstrate the generalizability of our approach by retroactively evaluating two additional warnings, those related to statins and atenolol, which we found to be valid. This paper was accepted by Vishal Gaur, operations management.


2014 ◽  
Vol 369 (1655) ◽  
pp. 20130473 ◽  
Author(s):  
Tobias Larsen ◽  
John P. O'Doherty

While there is a growing body of functional magnetic resonance imaging (fMRI) evidence implicating a corpus of brain regions in value-based decision-making in humans, the limited temporal resolution of fMRI cannot address the relative temporal precedence of different brain regions in decision-making. To address this question, we adopted a computational model-based approach to electroencephalography (EEG) data acquired during a simple binary choice task. fMRI data were also acquired from the same participants for source localization. Post-decision value signals emerged 200 ms post-stimulus in a predominantly posterior source in the vicinity of the intraparietal sulcus and posterior temporal lobe cortex, alongside a weaker anterior locus. The signal then shifted to a predominantly anterior locus 850 ms following the trial onset, localized to the ventromedial prefrontal cortex and lateral prefrontal cortex. Comparison signals between unchosen and chosen options emerged late in the trial at 1050 ms in dorsomedial prefrontal cortex, suggesting that such comparison signals may not be directly associated with the decision itself but rather may play a role in post-decision action selection. Taken together, these results provide us new insights into the temporal dynamics of decision-making in the brain, suggesting that for a simple binary choice task, decisions may be encoded predominantly in posterior areas such as intraparietal sulcus, before shifting anteriorly.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ofer Arazy ◽  
Dan Malkinson

Citizen science, whereby ordinary citizens participate in scientific endeavors, is widely used for biodiversity monitoring, most commonly by relying on unstructured monitoring approaches. Notwithstanding the potential of unstructured citizen science to engage the public and collect large amounts of biodiversity data, observers’ considerations regarding what, where and when to monitor result in biases in the aggregate database, thus impeding the ability to draw conclusions about trends in species’ spatio-temporal distribution. Hence, the goal of this study is to enhance our understanding of observer-based biases in citizen science for biodiversity monitoring. Toward this goals we: (a) develop a conceptual framework of observers’ decision-making process along the steps of monitor – > record and share, identifying the considerations that take place at each step, specifically highlighting the factors that influence the decisions of whether to record an observation (b) propose an approach for operationalizing the framework using a targeted and focused questionnaire, which gauges observers’ preferences and behavior throughout the decision-making steps, and (c) illustrate the questionnaire’s ability to capture the factors driving observer-based biases by employing data from a local project on the iNaturalist platform. Our discussion highlights the paper’s theoretical contributions and proposes ways in which our approach for semi-structuring unstructured citizen science data could be used to mitigate observer-based biases, potentially making the collected biodiversity data usable for scientific and regulatory purposes.


2018 ◽  
Vol 16 (7) ◽  
Author(s):  
Mimi Zaleha Abdul Ghani ◽  
Yazid Sarkom ◽  
Zalina Samadi

This paper aims to explore the rich potential of interactive visualisation environment integrating GIS for modelling urban growth and spatio-temporal transformation of Malaysian cities. As a case study example, authors consider a 3-D GIS model of Ampang Jaya, Selangor to investigate the techniques of data acquisition, data reconstruction from physical to digital, urban analysis and visualisation in constructing a digital model ranging from low to high geometric content including 2-D digital maps, digital orthographic and full volumetricparametric modelling. The key aspect of this virtual model is how it would assist in understanding the urban planning and design of Ampang Jaya by translating complex spatial information that are currently used by the authorities for planning activities such as maps, plans and written information into responsive, easily understandable spatial information. It could serve as a new platform to disseminate information about Ampang Jaya, bridge gaps among professionals involved in planning processes, improve communications among decision makers, stakeholders and the public as well as support decision making about thespatial growth of Ampang Jaya. Demonstrations of Ampang Jaya will also provide a clearer picture of the importance of ownership and control of 3-D models by local councils in empowering them in decision making, for example, in improving transparency, and avoiding misuse by project developers (Shiffer 1993; Sunesson et al., 2008). Such environment will improve the subsequent digital models and research in the area of urban design and planning in Malaysia where visual communication is pivotal.


Sign in / Sign up

Export Citation Format

Share Document