Multibody Simulation of the Path Tracking Performance of a Hybrid Leg-wheel Ground Mobile Robot

Author(s):  
Luca Bruzzone ◽  
Pietro Fanghella ◽  
Matteo Nisi ◽  
Giuseppe Quaglia
Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Luca Bruzzone ◽  
Mario Baggetta ◽  
Shahab E. Nodehi ◽  
Pietro Bilancia ◽  
Pietro Fanghella

This paper presents the conceptual and functional design of a novel hybrid leg-wheel-track ground mobile robot for surveillance and inspection, named WheTLHLoc (Wheel-Track-Leg Hybrid Locomotion). The aim of the work is the development of a general-purpose platform capable of combining tracked locomotion on irregular and yielding terrains, wheeled locomotion with high energy efficiency on flat and compact grounds, and stair climbing/descent ability. The architecture of the hybrid locomotion system is firstly outlined, then the validation of its stair climbing maneuver capabilities by means of multibody simulation is presented. The embodiment design and the internal mechanical layout are then discussed.


2000 ◽  
Vol 33 (4) ◽  
pp. 559-564
Author(s):  
Julio E. Normey-Rico ◽  
Ismael Alcalá ◽  
Juan Gómez-Ortega ◽  
Eduardo F. Camacho

Author(s):  
Şahin Yildirim ◽  
Sertaç Savaş

The goal of this chapter is to enable a nonholonomic mobile robot to track a specified trajectory with minimum tracking error. Towards that end, an adaptive P controller is designed whose gain parameters are tuned by using two feed-forward neural networks. Back-propagation algorithm is chosen for online learning process and posture-tracking errors are considered as error values for adjusting weights of neural networks. The tracking performance of the controller is illustrated for different trajectories with computer simulation using Matlab/Simulink. In addition, open-loop response of an experimental mobile robot is investigated for these different trajectories. Finally, the performance of the proposed controller is compared to a standard PID controller. The simulation results show that “adaptive P controller using neural networks” has superior tracking performance at adapting large disturbances for the mobile robot.


Sign in / Sign up

Export Citation Format

Share Document