scholarly journals Studies on Long-term Stress Corrosion Cracking Resistance for TT Alloy 690

Materia Japan ◽  
2020 ◽  
Vol 59 (12) ◽  
pp. 654-661
Author(s):  
Toshio Yonezawa
2021 ◽  
pp. 117453
Author(s):  
Zhao Shen ◽  
Edward Roberts ◽  
Naganand Saravanan ◽  
Phani Karamched ◽  
Takumi Terachi ◽  
...  

Author(s):  
David Shanks ◽  
Rob Leeson ◽  
Corina Blaga ◽  
Rafael G. Mora

Implementation of Integrity Management Programs (IMP) for pipelines has motivated the design of Fitness-For-Service methodologies to assess Stress Corrosion Cracking (SCC) and fatigue-dependent features reported by Ultrasonic Crack Detection (UTCD) In-Line Inspections. The philosophical approach defined by the API 579 [1] “Fitness-For-Service” from the petrochemical industry in conjunction with Risk-based standards and regulations (i.e. CSA-Z662-2003 [2] and US DOT 49 Parts 192 [3] and 195 [4]) and in-line inspection validation (i.e. API 1163 [5]) approaches from the pipeline industry have provided the engineering basis for ensuring the safety, reliability and continued service of the in-line inspected pipelines. This paper provides a methodology to develop short and long-term excavation and re-inspection programs through a four (4) phase-process: Pre-Assessment, Integrity Criticality Assessment, Remediation and Repair, Remaining Life Extension and In-Service Monitoring. In the first phase, Pre-assessment, areas susceptible to Stress Corrosion Cracking (SCC) and fatigue-dependent features are correlated to in-line inspection data, soil modeling, pipeline and operating conditions, and associated consequences in order to provide a risk-based prioritization of pipeline segments and technical understanding for performing the assessment. The second phase, Integrity Criticality Assessment, will develop a short-term maintenance program based on the remaining strength of the in-line inspection reported features previously correlated, overlaid and risk-ranked. In addition, sites may be identified in Phase 1 for further investigation. In the third phase, a Remediation and Repair program will undertake the field investigation in order to repair and mitigate the potential threats as well as validating the in-line inspection results and characterization made during the Pre-assessment and Integrity Criticality Assessment (Phases 1 & 2). With the acquired knowledge from the previous three (3) phases, a Remaining Life Extension and In-Service Monitoring program will be developed to outline the long-term excavation and re-inspection program through the use of SCC and Fatigue crack growth probabilistic modeling and cost benefit analysis. The support of multiple Canadian and US pipeline operating companies in the development, validation and implementation of this methodology made this contribution possible.


Author(s):  
Arindam Chakraborty ◽  
Wasimreza Momin ◽  
Angah Miessi ◽  
Peihua Jing ◽  
Haiyang Qian

Leak-Before-Break (LBB) is employed in design of nuclear power reactor piping to eliminate consideration of the dynamic effects of pipe rupture from the plant design basis for the affected piping system. LBB cannot be applied if environmental conditions that could lead to degradation by stress corrosion cracking exists. For Alloy 600/82/182 dissimilar metal welds (DMW) in pressurized water reactor plants, primary water stress corrosion cracking (PWSCC) is found to be active. Application of weld overlay (WOL) of non-susceptible Alloy 690/52/152 material has been shown to mitigate PWSCC growth in DMW. Therefore, LBB can be considered for a DMW with Alloy 690/52/152 overlay. However, WOL sizing design postulates a complex crack which is through wall in the overlay material and part through or full circumferential in the DMW base material. This significantly reduces the critical flaw size and in turn the maximum allowable flaw size for leak rate. The current industry practice conservatively ignores the full circumferential crack in the original pipe material and assumes a through wall crack along the entire pipe thickness. This assumptions leads to significantly reduced leakage due to smaller crack opening. The problem becomes more critical with small diameter pipes. The current work calculates the crack opening displacements (CODs) for a pipe with complex crack. Since it is a function of several geometry and materials parameters, response functions are generated to calculate CODs.


CORROSION ◽  
10.5006/3492 ◽  
2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Zeynab Shirband ◽  
Jing-Li Luo ◽  
Reginald Eadie ◽  
Weixing Chen

Hydrostatic testing, or hydrotesting, has been widely used as a stress corrosion cracking management method in the pipeline industry, particularly in gas pipelines. Although the technique has been very useful in the prevention of operational failures, it is known that these high pressures can produce significant plastic deformation around stress concentrators, such as pits and other surface flaws, that might be present. This plasticity can temporarily retard long, well-developed cracks; however, the effect of this plasticity on growth of very small cracks has not previously been studied. In this work, a long-term test was conducted to simulate real pipeline pressure cycling conditions by the application of occasional hydrotesting loads on steel samples. Crack initiations from pits were compared between specimens undergoing no hydrotesting load (control specimens) and those that underwent three hydrotest cycles during the test. The results showed that pit-to-crack transition was enhanced by the application of three hydrotesting loads. Seventy percent more cracks were found to have grown beyond ferrite grain boundaries in the hydrotested specimens. This initial study indicated substantial differences between small crack formation with and without hydrotesting. These differences predict significantly higher short crack growth in the hydrotested samples. Further study is necessary to further delineate these effects.


Author(s):  
Lingying Ye ◽  
Xuebin Yao ◽  
Huaqiang Lin ◽  
Shengdan Liu ◽  
Yunlai Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document