scholarly journals Effect of Solution Treatment on Microstructure Evolution and Mechanical Properties of Mg-6.0Zn-0.6Y-0.5Zr Alloy Processed by Equal Channel Angular Extrusion

2008 ◽  
Vol 49 (5) ◽  
pp. 957-962 ◽  
Author(s):  
Weineng Tang ◽  
Rongshi Chen ◽  
Enhou Han
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2007 ◽  
Vol 551-552 ◽  
pp. 651-656
Author(s):  
Yan Shu Zhang ◽  
Zhi Peng Zeng ◽  
X.F. Liu ◽  
Quan Lin Jin

The microstructure evolution and mechanical properties of magnesium alloy AZ31D processed by equal channel angular extrusion(ECAE) are studied. The processing temperature and the passes of extrusion are important factors to affect the microstructure and mechanical properties of the magnesium alloy during ECAE. In this paper, ECAE was performed at the temperature from 523 to 673K. The ductility increased through the grain refinement after the ECAE because the recrystallization took place and high angle grain boundary formed. The elongation of magnesium alloys AZ31D was improved after the ECAE. The maximum elongation-to-failure of magnesium alloys AZ31D processed by ECAE for 4 passes at 573K and strain rate of 0.5 10−4 s−1 × was 350%.


2005 ◽  
Vol 488-489 ◽  
pp. 601-604 ◽  
Author(s):  
Li Jin ◽  
Dong Liang Lin ◽  
Da Li Mao ◽  
Xiao Qing Zeng ◽  
Wen Jiang Ding

Microstructure evolution and mechanical properties of AZ31 Mg alloy during equal channel angular extrusion (ECAE) at the temperature range of 453-498K was investigated. The processing temperature is an important factor to affect the microstructure and mechanical properties of the Mg alloy during ECAE. ECAE processing can be practiced at 498k or upon the temperature for as-received AZ31 alloy. A new two-step ECAEed processing was successfully used with lowing the processing temperature to 453k. The ductility increased but yield stress decreased though the grain refinement after ECAE at 498k because the recrystallization took place and large angle grain boundary formed. However both the ductility and yield stress were increased after two-step ECAE, which was ascribed to grain refinement as well as incomplete dynamic recovery and recrystallization during the processing.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


2010 ◽  
Author(s):  
K. J. Kim ◽  
D. Y. Yang ◽  
J. W. Yoon ◽  
F. Barlat ◽  
Y. H. Moon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document