Microstructure Evolution and Mechanical Properties of AZ 31 Mg Alloy Processed by Equal Channel Angular Extrusion

2005 ◽  
Vol 488-489 ◽  
pp. 601-604 ◽  
Author(s):  
Li Jin ◽  
Dong Liang Lin ◽  
Da Li Mao ◽  
Xiao Qing Zeng ◽  
Wen Jiang Ding

Microstructure evolution and mechanical properties of AZ31 Mg alloy during equal channel angular extrusion (ECAE) at the temperature range of 453-498K was investigated. The processing temperature is an important factor to affect the microstructure and mechanical properties of the Mg alloy during ECAE. ECAE processing can be practiced at 498k or upon the temperature for as-received AZ31 alloy. A new two-step ECAEed processing was successfully used with lowing the processing temperature to 453k. The ductility increased but yield stress decreased though the grain refinement after ECAE at 498k because the recrystallization took place and large angle grain boundary formed. However both the ductility and yield stress were increased after two-step ECAE, which was ascribed to grain refinement as well as incomplete dynamic recovery and recrystallization during the processing.

2007 ◽  
Vol 551-552 ◽  
pp. 651-656
Author(s):  
Yan Shu Zhang ◽  
Zhi Peng Zeng ◽  
X.F. Liu ◽  
Quan Lin Jin

The microstructure evolution and mechanical properties of magnesium alloy AZ31D processed by equal channel angular extrusion(ECAE) are studied. The processing temperature and the passes of extrusion are important factors to affect the microstructure and mechanical properties of the magnesium alloy during ECAE. In this paper, ECAE was performed at the temperature from 523 to 673K. The ductility increased through the grain refinement after the ECAE because the recrystallization took place and high angle grain boundary formed. The elongation of magnesium alloys AZ31D was improved after the ECAE. The maximum elongation-to-failure of magnesium alloys AZ31D processed by ECAE for 4 passes at 573K and strain rate of 0.5 10−4 s−1 × was 350%.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2008 ◽  
Vol 47 (4) ◽  
pp. 437-447 ◽  
Author(s):  
L. Vuong ◽  
L. Jiang ◽  
J.J. Jonas ◽  
S. Godet ◽  
B. Verlinden ◽  
...  

2005 ◽  
Vol 59 (18) ◽  
pp. 2267-2270 ◽  
Author(s):  
Li Jin ◽  
Dongliang Lin ◽  
Dali Mao ◽  
Xiaoqing Zeng ◽  
Wenjiang Ding

2006 ◽  
Vol 423 (1-2) ◽  
pp. 247-252 ◽  
Author(s):  
Li Jin ◽  
Dongliang Lin ◽  
Dali Mao ◽  
Xiaoqing Zeng ◽  
Bin Chen ◽  
...  

2013 ◽  
Vol 773 ◽  
pp. 397-401
Author(s):  
Lei Lei Gao ◽  
Jin Zhong Zhang

A new processing procedure was applied to an Mg alloy. This procedure involves the equal channel angular extrusion (ECAE) process and laser melting surface treatment. A commercial Mg alloy was first produced by equal channel angular extrusion (ECAE) process. Then the laser melting surfave treatment was carried out after ECAE. The effects of ECAE and laser melting on tribological properties of the alloy were investigated. Experimental results showed that the mechanical properties and tribological properties of the alloy were improved after ECAE. The laser melting surface treatment can further improve the tribological properties of Mg alloy.


Sign in / Sign up

Export Citation Format

Share Document