scholarly journals Carbothermic Reduction of Alumina and Aluminous Ores and Effects of Several Additional Materials (Studies on the Production of Crude Aluminum Alloy by the Direct Reduction of Aluminous Ores (IV)

1971 ◽  
Vol 12 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Takeaki Kikuchi ◽  
Sadayuki Ochiai ◽  
Toshio Kurosawa ◽  
Tetsuo Yagihashi
2020 ◽  
Vol 117 (1) ◽  
pp. 118
Author(s):  
Wentao Guo ◽  
Zhi Wang ◽  
Zengwu Zhao ◽  
Wenfeng Wang

The evolution of mineral phase structure during the reduction and melting separation of an rare earth (RE)-rich iron mineral (RER-IM) is investigated. The results show the iron oxides are reduced to their metallic iron or FeO at 1373 K. When reduction time is 180 min, the reduction degree is 84%. Both bastnaesite (RE(CO3)F) and monazite (REPO4) are transformed into Ca2RE8(SiO4)6O2 during carbothermic reduction at 1373 K. The mineral with a reduction degree of 84% is melt-separated in a graphite crucible at 1773 K for 20 min, the resulting slag contains 20.64% RE2O3, with RE existing in the form of Ca2RE8(SiO4)6O2. Moreover, P from the reduction of Ca3(PO4)2 dissolves in iron with a content ranging from 1.2 to 2.21%. The type of RE phase that occurs in the slag is related to the distribution of P between slag and iron. A low P content in the slag facilitates the formation of Ca2RE8(SiO4)6O2, but a high content in the slag favours Ca3RE2[(Si, P)O4]3F. Thus, it is confirmed that the RE phase structure is controlled by the distribution of P between slag and iron.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 550 ◽  
Author(s):  
Xin Jiang ◽  
Guangen Ding ◽  
He Guo ◽  
Qiangjian Gao ◽  
Fengman Shen

Recently, increasing attention has been paid to alternative ironmaking processes due to the desire for sustainable development. Aiming to develop a new direct reduction technology, the paired straight hearth (PSH) furnace process, the carbothermic reduction of ore-coal composite pellets in a tall pellets bed was investigated at the lab-scale in the present work. The experimental results show that, under the present experimental conditions, when the height of the pellets bed is 80 mm (16–18 mm each layer, and 5 layers), the optimal amount of carbon to add is C/O = 0.95. Addition of either more or less carbon does not benefit the production of high quality direct reduced iron (DRI). The longer reduction time (60 min) may result in more molten slag in the top layer of DRI, which does not benefit the actual operation. At 50 min, the metallization degree could be up to 85.24%. When the experiment was performed using 5 layers of pellets (about 80 mm in height) and at 50 min duration, the productivity of metallic iron could reach 55.41 kg-MFe/m2·h (or 75.26 kg-DRI/m2·h). Therefore, compared with a traditional shallow bed (one or two layers), the metallization degree and productivity of DRI can be effectively increased in a tall pellets bed. It should be pointed out that the pellets bed and the temperature should be increased simultaneously. The present investigation may give some guidance for the commercial development of the PSH process in the future.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
P.I. Loboda ◽  
Younes Razaz ◽  
S. Grishchenko

Purpose. To substantiate the efficiency of processing hematite raw materials at the Krivoy Rog Mining and Processing Plant of Oxidized Ores using the direct reduction technology itmk3®. Metodology. Analysis of the results of the itmk3® direct restoration technology developed by Kobe Steel Ltd., Japan and Hares Engineering GmbX, Austria, with a view to using it to process Krivbass hematite ores into granulated iron (so-called “nuggets”). Findings. The involvement in the production of hematite ores (oxidized quartzite) of Krivbass with high iron content, but with low magnetic properties for their processing into granular cast iron is grounded. Originality. The use of itmk3® direct reduction technology from Kobe Steel Ltd., Japan and Hares Engineering GmbH, Austria for the processing of Krivbass hematite ores into granular cast iron is justified for the first time. Practical value. The efficiency of the use of hematite ores (oxidized quartzite) has been substantiated, which can significantly reduce the costs in the mining cycle for the economical production of metallurgical products.


Sign in / Sign up

Export Citation Format

Share Document