melting separation
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 12 (3) ◽  
pp. 485-498
Author(s):  
B. V. Lunev ◽  
V. V. Lapkovsky

We propose a model of decompression melting, separation, migration and freezing of the melt in the upper mantle during the convective instability process. The model takes into account differences between phase diagrams of the melt and the matrix and the resultant features of the melt’s behavior, without calculating reaction rates in a multicomponent medium. It is constructed under an explicit concept of the local thermodynamic equilibrium of the existing phases. Therefore, we further develop the first approximation of the descriptions of convection in the upper mantle and the formation of large epicontinental sedimentary basins, which have been presented in earlier publications. Our computational experiments show that primary melting of the upper mantle’s fertile material occurs intensively in a narrow frontal part of the ascending hot material flow. Then, the depleted and partially melted material rises farther upward from the front of primary melting. Melting of the depleted material continues at lower pressures in a rather wide range of depths (120–77 km). Further, the migrating melt is supplied by two sources, i.e. a deep-seated one, wherein the fertile material melts, and the medium-depth one, wherein melting of the depleted material takes place. Once the temperature and pressure rates of the melt reach the values corresponding to those of its solidus, a narrow freezing front is formed. Its width is almost similar to the primary melting front. As the ascending convective flow develops, the freezing front shifts upward. As a result, a quite thick (around 40–50 km) basalt-saturated layer occurs above the freezing front. An important observation in our modeling experiments is that, despite a considerably large total volume of the melted material, a one-time melt content in the mantle does not exceed tenths of one percent, when we consider averaging to volumes with a linear size of about 1.0 km. The basalt melt extraction depletes iron in the mantle and significantly reduces the mantle density. Considering the calculated basalt-depletion values for the matrix at 0.1–0.2, the density deficit doubles in comparison to the thermal expansion of the material. Logically, both the Rayleigh number and the intensity of convection also double (and this is confirmed by the calculations), which means that convection is enhanced after the melting start.Testing of the model shows that it gives a reasonable picture that is consistent with the available geological and geophysical data on the structure of the lithosphere underneath the currently developing epicontinental sedimentary basins. Furthermore, within the limits of its detail, this model is consistent with the results of modeling experiments focused on melting and melting dynamics, which are based on calculations of reactions between components of the mantle material.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4937
Author(s):  
Shaoyan Hu ◽  
Deyong Wang ◽  
Xianglong Li ◽  
Wei Zhao ◽  
Tianpeng Qu ◽  
...  

Concentrating the chromium in chromium slag and improving the chromium–iron ratio is beneficial for the further utilization of chromium slag. In this paper, chromium slag obtained from a chromite lime-free roasting plant was used as the raw material. Pellets made of the chromium slag and pulverized coal were reduced at different pre-reduction temperatures and then separated by a melting separation process or magnetic separation process, respectively. The mass and composition of the metallized pellets before separation, along with the alloy and tail slag after separation, were comprehensively analyzed. The experimental results showed that the output yield of alloy, iron recovery rate, and chromium content in the alloy were all higher when using melting separation than when using magnetic separation, because of the further reduction during the melting stage. More importantly, a relatively low pre-reduction temperature and selection of magnetic separation process were found to be more beneficial for chromium enrichment in slag; the highest chromium–iron ratio in tail slag can reach 2.88.


2021 ◽  
Vol 5 ◽  
pp. 30-36
Author(s):  
A. A. Nikolaev ◽  
◽  
◽  

The aim of the work was investigation of separation of titanium’s and silicon’s oxides during plasma-arc melting of quartz-leucoxene concentrate from Yarega deposit. The melting was proceeded in laboratory plasma-arc furnace in graphite crucible at 16 – 40 kW of arc power. The microstructure and R-x phase analysis of solidified melt were investigated after arc melting. The melt separated on two layers. The upper layer consisted mainly of SiO2 in the form of glass, the lower layer — mainly of cemented titanium oxide particles ≈ 100 μm in dimension. TiO2, Ti8O15, Ti6O11, Fe3TiO3O10, Ti3O5 were observed. These particles formed during melting and moved throw liquid glass to the bottom of crucible with the speed of V ≈ 10–4 m/s. The separation of TiO2 and SiO2 required energy W ≈ 100 GJ/t of concentrate in laboratory plasma arc furnace. The possibility of industrial employment of the arc melting separation was discussed. The estimated energy requirement was about 5 GJ/t in 20-t arc furnace.


2020 ◽  
Vol 60 (6) ◽  
pp. 1141-1148
Author(s):  
Xuefeng She ◽  
Wanli Yi ◽  
Tengfei Ma ◽  
Zhuo Zhang ◽  
Jingsong Wang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1839
Author(s):  
Bin Li ◽  
Guanyong Sun ◽  
Shaoying Li ◽  
Hanjie Guo ◽  
Jing Guo

In this study, high-purity iron with purity of 99.987 wt.% was prepared employing a process of direct reduction–melting separation–slag refining. The iron ore after pelletizing and roasting was reduced by hydrogen to obtain direct reduced iron (DRI). Carbon and sulfur were removed in this step and other impurities such as silicon, manganese, titanium and aluminum were excluded from metallic iron. Dephosphorization was implemented simultaneously during the melting separation step by making use of the ferrous oxide (FeO) contained in DRI. The problem of deoxidization for pure iron was solved, and the oxygen content of pure iron was reduced to 10 ppm by refining with a high basicity slag. Compared with electrolytic iron, the pure iron prepared by this method has tremendous advantages in cost and scale and has more outstanding quality than technically pure iron, making it possible to produce high-purity iron in a short-flow, large-scale, low-cost and environmentally friendly way.


2020 ◽  
Vol 117 (1) ◽  
pp. 118
Author(s):  
Wentao Guo ◽  
Zhi Wang ◽  
Zengwu Zhao ◽  
Wenfeng Wang

The evolution of mineral phase structure during the reduction and melting separation of an rare earth (RE)-rich iron mineral (RER-IM) is investigated. The results show the iron oxides are reduced to their metallic iron or FeO at 1373 K. When reduction time is 180 min, the reduction degree is 84%. Both bastnaesite (RE(CO3)F) and monazite (REPO4) are transformed into Ca2RE8(SiO4)6O2 during carbothermic reduction at 1373 K. The mineral with a reduction degree of 84% is melt-separated in a graphite crucible at 1773 K for 20 min, the resulting slag contains 20.64% RE2O3, with RE existing in the form of Ca2RE8(SiO4)6O2. Moreover, P from the reduction of Ca3(PO4)2 dissolves in iron with a content ranging from 1.2 to 2.21%. The type of RE phase that occurs in the slag is related to the distribution of P between slag and iron. A low P content in the slag facilitates the formation of Ca2RE8(SiO4)6O2, but a high content in the slag favours Ca3RE2[(Si, P)O4]3F. Thus, it is confirmed that the RE phase structure is controlled by the distribution of P between slag and iron.


2017 ◽  
Vol 89 (3) ◽  
pp. 1700363 ◽  
Author(s):  
Zhenyang Wang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Zhengjian Liu

2017 ◽  
Vol 24 (7) ◽  
pp. 691-696
Author(s):  
Yu-bao Liu ◽  
Zhi-hong Zhang ◽  
Er-xiong Zhao ◽  
Xian-heng Zhang ◽  
Xiao-qing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document