scholarly journals Pitting Corrosion Behaviour of Type SUS904L and SUS316L Stainless Steels in Chloride Solutions

1994 ◽  
Vol 35 (10) ◽  
pp. 699-702 ◽  
Author(s):  
E. A. Abd El Meguid ◽  
V. K. Gouda ◽  
N. A. Mahmoud
2017 ◽  
Vol 62 (2) ◽  
pp. 711-714
Author(s):  
D. Kasprzyk ◽  
B. Stypuła

AbstractThe present work compares corrosion behaviour of four types of S30403, S31603, S32615 austenitic and S32404 austenitic-ferritic stainless steels in chloride solutions (1%, 3% NaCl) and in Ringer solution, at 37°C temperature. Corrosion resistance was determined by potentiodynamic polarization measurements and a thirty day immersion test conducted in Ringer solution. The immersion test was performed in term of biomedical application. These alloy were spontaneously passivated in all electrolytes, wherein S30403, S31603 and S32404 undergo pitting corrosion. Only S32615 containing 5.5% Si shows resistance to pitting corrosion.


2019 ◽  
Vol 121 ◽  
pp. 01011
Author(s):  
Olga Parmenova ◽  
Svetlana Mushnikova ◽  
Vitaliy Bobyr ◽  
Evgeniy Samodelkin

This paper presents the results of comparative corrosion resistance studies of stainless steels manufactured by selective laser melting (SLM) in the initial state with subsequent heat treatment and machining. Pitting corrosion tests are carried out, according to ASTM G48 method A in 10% FeCl3·6H2O solution at elevated temperature and exposure time for 5h. The studies were performed on the AISI 321 and AISI 316L stainless steels manufactured by SLM. It was obtained that laser scanning speed decrease led to density rise by other SLM parameters being equal. Porosity affected to the stainless steel corrosion behaviour significant. Metal density decrease resulted to corrosion rate rise. Microstructure examination showed that pitting corrosion development depended on surface steel condition.


2012 ◽  
Vol 326-328 ◽  
pp. 620-625 ◽  
Author(s):  
Joanna Michalska

Hydrogen entering into steel affects its electrochemical properties and may enhance the susceptibility to environmental degradation. The present work has been aimed at further clarifying the effect of hydrogenation on the corrosion behaviour and passivity of highly-alloyed stainless steels. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the cyclic polarization curves. The conclusion is that hydrogen may deteriorated the passive film stability and corrosion resistance to pitting of highly-alloyed stainless steel. Furthermore, the presence of hydrogen in passive films increases corrosion current density, decreasing the potential of the film breakdown and repassivation potential. It was also found that the degree of susceptibility to hydrogen-enhanced pitting corrosion was dependent on the type of steel.


1993 ◽  
Vol 42 (2) ◽  
pp. 93-98
Author(s):  
Takafumi Motooka ◽  
Yosohiro Sugie ◽  
Masafumi Kobune ◽  
Satoshi Fujii

2007 ◽  
Vol 49 (2) ◽  
pp. 510-525 ◽  
Author(s):  
A. Pardo ◽  
M.C. Merino ◽  
M. Carboneras ◽  
A.E. Coy ◽  
R. Arrabal

Sign in / Sign up

Export Citation Format

Share Document