scholarly journals Identification and characterization of a cell wall porin from Gordonia jacobaea

2017 ◽  
Vol 63 (5) ◽  
pp. 266-273
Author(s):  
Guadalupe Jiménez-Galisteo ◽  
Ester Fusté ◽  
Elisa Muñoz ◽  
Teresa Vinuesa ◽  
Tom G. Villa ◽  
...  
2005 ◽  
Vol 242 (2) ◽  
pp. 281-285 ◽  
Author(s):  
Kayo Okumura ◽  
Hameem I. Kawsar ◽  
Takeshi Shimizu ◽  
Toshiko Ohta ◽  
Hideo Hayashi ◽  
...  

2012 ◽  
Vol 12 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Hugo Mélida ◽  
Jose V. Sandoval-Sierra ◽  
Javier Diéguez-Uribeondo ◽  
Vincent Bulone

ABSTRACT Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N -acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes.


1979 ◽  
Vol 66 (10) ◽  
pp. 525-526 ◽  
Author(s):  
G. Touet ◽  
H. G. Aach
Keyword(s):  

1997 ◽  
Vol 25 (3) ◽  
pp. 856-860 ◽  
Author(s):  
F. M. Klis ◽  
L. H. P. Caro ◽  
J. H. Vossen ◽  
J. C. Kapteyn ◽  
A. F. J. Ram ◽  
...  

2010 ◽  
Vol 98 (3) ◽  
pp. 648a
Author(s):  
Daniel Auguin ◽  
Yinshan Yang ◽  
Stephane Delbecq ◽  
Emilie Dumas ◽  
Virginie Molle ◽  
...  

2012 ◽  
Vol 393 (8) ◽  
pp. 767-775 ◽  
Author(s):  
Boris Tefsen ◽  
Ellen L. Lagendijk ◽  
Joohae Park ◽  
Michiel Akeroyd ◽  
Doreen Schachtschabel ◽  
...  

Abstract Aspergillus niger possesses a galactofuranosidase activity, however, the corresponding enzyme or gene encoding this enzyme has never been identified. As evidence is mounting that enzymes exist with affinity for both arabinofuranose and galactofuranose, we investigated the possibility that α-l-arabinofuranosidases, encoded by the abfA and abfB genes, are responsible for the galactofuranosidase activity of A. niger. Characterization of the recombinant AbfA and AbfB proteins revealed that both enzymes do not only hydrolyze p-nitrophenyl-α-l-arabinofuranoside (pNp-α-Araf) but are also capable of hydrolyzing p-nitrophenyl-β-d-galactofuranoside (pNp-β-Galf). Molecular modeling of the AbfB protein with pNp-β-Galf confirmed the possibility for AbfB to interact with this substrate, similarly as with pNp-α-Araf. We also show that galactomannan, a cell wall compound of A. niger, containing β-linked terminal and internal galactofuranosyl moieties, can be degraded by an enzyme activity that is present in the supernatant of inulin-grown A. niger. Interestingly, purified AbfA and AbfB did not show this hydrolyzing activity toward A. nigergalactomannan. In summary, our studies demonstrate that AbfA and AbfB, α-l-arabinofuranosidases from different families, both contain a galactofuranose (Galf)-hydrolyzing activity. In addition, our data support the presence of a Galf-hydrolase activity expressed by A. niger that is capable of degrading fungal galactomannan.


Sign in / Sign up

Export Citation Format

Share Document