scholarly journals Multiple Structural Changes Found around Crack Tip of Carbon Black-filled Natural Rubber Vulcanizate

2019 ◽  
Vol 92 (5) ◽  
pp. 171-173
Author(s):  
Masatoshi TOSAKA ◽  
Takayuki MARUYAMA
1998 ◽  
Vol 71 (2) ◽  
pp. 157-167 ◽  
Author(s):  
G. R. Hamed ◽  
J. Zhao

Abstract Thin specimens of a black-filled, natural rubber vulcanizate have been held in uniaxial tension at 72°C and 200% elongation in a forced air oven. After substantial oxidative attack (inferred from stress relaxation), small edge cracks formed. Initially, these cracks grew perpendicular to the loading direction, but, upon reaching about 0.1 mm in depth, longitudinal crack growth commenced and fracture progressed by a kind of 0°-peel process with “splitting-off” of successive strands of rubber. This phenomenon is attributed to anisotropy in strength caused both by straining and by oxidative attack.


1972 ◽  
Vol 45 (4) ◽  
pp. 1051-1063 ◽  
Author(s):  
G. M. Doyle ◽  
R. E. Humphreys ◽  
R. M. Russell

Abstract A comparison is made of the composition and properties of the different rubber vulcanizate networks obtained by varying the ratio of sulfur to sulfenamide accelerator and by the thermal aging of vulcanizates containing predominantly polysulfide crosslinks. It is concluded that the changes in network structure which can take place, for example, during the service life of natural rubber tires are not the direct cause of failures of the type associated with rubber fatigue at high temperatures. However, a reduction in the total number of crosslinks can accelerate failure by increasing the amount of heat generated during flexing. More stable networks giving improved resistance to fatigue at high operating temperatures are obtained by the use of higher ratios of accelerator to sulfur than are conventionally employed.


2011 ◽  
Vol 122 (2) ◽  
pp. 1300-1315 ◽  
Author(s):  
Atsushi Kato ◽  
Toshiya Suda ◽  
Yuko Ikeda ◽  
Shinzo Kohjiya

Author(s):  
A. K. Ghosh ◽  
S. Maiti ◽  
B. Adhikari ◽  
G. S. Ray ◽  
S. K. Mustafi

1982 ◽  
Vol 14 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Hajime Serizawa ◽  
Masayoshi Ito ◽  
Tetsuo Kanamoto ◽  
Koji Tanaka ◽  
Akimasa Nomura

1987 ◽  
Vol 60 (5) ◽  
pp. 910-923 ◽  
Author(s):  
D. J. Lee ◽  
J. A. Donovan

Abstract CB facilitates strain-induced crystallization and increases the size of the crystallized zone at the stressed crack tip. Both effects are major reinforcement mechanisms that increase the fracture resistance of CB-reinforced NR.


Author(s):  
Lewis B. Tunnicliffe

ABSTRACT Fatigue crack growth behavior of carbon black–reinforced natural rubber is investigated. Rubber compounds of Shore A = 70 are prepared by varying the formulation loadings of a wide range of carbon black types based on their structure and surface area properties. The resulting fatigue crack growth behavior shows significant variation in β exponent values, depending on the properties of the carbon black. These variations are rationalized by considering the strain amplification of natural rubber by carbon black aggregates in the region of compound directly ahead of the crack tip. An assumption is made that little networking of the carbon black aggregates exists in this region of very high strain and that hydrodynamic calculations that consider occluded rubber can therefore provide realistic values for strain amplification. A reasonable scaling of power law crack growth parameters to calculated strain amplification factors is found, with the exponent, β, decreasing with increasing strain amplification. The implication here is that enhanced strain amplification promotes the formation of strain-induced crystallites in the crack tip region. Performance tradeoffs resulting from the crossover of crack growth data sets dependent on the carbon black type are discussed. Of practical significance is the fact that the strain amplification factors can be calculated directly from knowledge of carbon black type and loading in rubber formulations.


1963 ◽  
Vol 36 (3) ◽  
pp. 697-708 ◽  
Author(s):  
A. N. Gent

Abstract Some experimental measurements are described of stress relaxation and creep at room temperatures in vulcanizates of natural rubber, butyl, and SBR. In an unfilled natural rubber vulcanizate the rate of stress relaxation is found to rise sharply for extensions of more than about 200%. Reasons are given for attributing this to the growth of a crystalline phase. Similar rates are observed at all extensions for a carbon black filled natural rubber vulcanizate. This is shown to be in satisfactory accord with the Mullins-Tobin model structure for filled vulcanizates, when the whole of the observed relaxation occurs in “softened” regions at rates appropriate to the high local deformations. The failure of rubber-carbon black associations with time does not appear to constitute a major relaxation process. In noncrystallizing unfilled vulcanizates the rate of relaxation is found to decrease somewhat with extension, possibly due to finite-extensibility effects. Preliminary measurements on a filled SBR vulcanizate suggest that a significant contribution to the observed relaxation arises from progressive failure of rubber-filler associations in this case. The relation derived previously between the rates of creep and stress relaxation at equivalent deformations is confirmed in all cases, within experimental error. Its validity in highly-irreversible systems is thus established experimentally.


Sign in / Sign up

Export Citation Format

Share Document